Electronic Structures of Graphene/MoS2 Heterostructure: Effects of Stacking Orientation, Element Substitution, and Interlayer Distance


Dian Putri Hastuti(1*), Kenji Nawa(2), Kohji Nakamura(3)

(1) Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu city, Mie 514-8507, Japan
(2) Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu city, Mie 514-8507, Japan; Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
(3) Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu city, Mie 514-8507, Japan
(*) Corresponding Author


Effects of stacking orientation, element substitution, and interlayer distance on electronic structures of graphene/MoS2 heterostructures were investigated using first-principles calculations. The results predicted that the stacking orientation does not take a crucial role in changing the electronic structures in contrast to element substitution, which converts the system from semiconductor to metallic. A bandgap opening originating in a Dirac band of graphene is found to be governed by the interface distance between graphene and MoS2 layers.


graphene; transition-metal dichalcogenide; heterostructure; electronic structure; first-principles calculations

Full Text:

Full Text PDF


[1] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A., 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (7065), 197–200.

[2] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., 2004, Electric field effect in atomically thin carbon films, Science, 306 (5696), 666–669.

[3] Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong, B.H., and Min, D.H., 2013, Biomedical applications of graphene and graphene oxide, Acc. Chem. Res., 46 (10), 2211–2224.

[4] Zhang, W., Chuu, C.P., Huang, J.K., Chen, C.H., Tsai, M.L., Chang, Y.H., Liang, C.T., Chen, Y.Z., Chueh, Y.L., He, J.H., Chou, M.Y., and Li, L.J., 2015, Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Sci. Rep., 4, 3826.

[5] Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., dos Santos, J.M.B.L., Nilsson, J., Guinea, F., Geim, A.K., and Castro Neto, A.H., 2007, Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett., 99 (21), 216802.

[6] Avsar, A., Tan, J.Y., Taychatanapat, T., Balakrishnan, J., Koon, G.K.W., Yeo, Y., Lahiri, J., Carvalho, A., Rodin, A.S., O’Farrell, E.C.T., Eda, G., Castro Neto, A.H., and Özyilmaz, B., 2014, Spin-orbit proximity effect in graphene, Nat. Commun., 5 (1), 4875.

[7] Fu, S., Wang, D., Ma, Z., Liu, G., Zhu, X., Yan, M., and Fu, Y., 2021, The first-principles study on the halogen-doped graphene/MoS2 heterojunction, Solid State Commun., 334-335, 114366.

[8] Tang, S., Wu, W., Xie, X., Li, X., and Gu, J., 2017, Band gap opening of bilayer graphene by graphene oxide support doping, RSC Adv., 7 (16), 9862–9871.

[9] Tayyab, M., Hussain, A., Adil, W., Nabi, S., and Asif, Q.A., 2020, Band-gap engineering of graphene by Al doping and adsorption of Be and Br on impurity: A computational study, Comput. Condens. Matter, 23, e00463.

[10] Matis, B.R., Burgess, J.S., Bulat, F.A., Friedman, A.L., Houston, B.H., and Baldwin, J.W., 2012, Surface doping and band gap tunability in hydrogenated graphene, ACS Nano, 6 (1), 17–22.

[11] Hirahara, T., Ebisuoka, R., Oka, T., Nakasuga, T., Tajima, S., Watanabe, K., Taniguchi, T., and Yagi, R., 2018, Multilayer graphene shows intrinsic resistance peaks in the carrier density dependence, Sci. Rep., 8 (1), 13992.

[12] Zhang, Y., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., and Wang, F., 2009, Direct observation of a widely tunable bandgap in bilayer graphene, Nature, 459 (7248), 820–823.

[13] Cao, X., Shi, J.J., Zhang, M., Jiang, X.H., Zhong, H.X., Huang, P., Ding, Y.M., and Wu, M., 2016, Band gap opening of graphene by forming heterojunctions with the 2D carbonitrides nitrogenated holey graphene, g-C3N4, and g-CN: Electric field effect, J. Phys. Chem. C, 120 (20), 11299–11305.

[14] Gmitra, M., and Fabian, J., 2017, Proximity effects in bilayer graphene on monolayer WSe2: Field-effect spin valley locking, spin-orbit valve, and spin transistor, Phys. Rev. Lett., 119 (14), 146401.

[15] Singh, S., Espejo, C., and Romero, A.H., 2018, Structural, electronic, vibrational, and elastic properties of graphene/MoS2 bilayer heterostructures, Phys. Rev. B, 98 (15), 155309.

[16] Yu, X., Zhao, G., Gong, S., Liu, C., Wu, C., Lyu, P., Maurin, G., and Zhang, N., 2020, Design of MoS2/Graphene van der Waals heterostructure as highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media, ACS Appl. Mater. Interfaces, 12 (22), 24777–24785.

[17] Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., and Zhang, H., 2012, Single-layer MoS2 phototransistors, ACS Nano, 6 (1), 74–80.

[18] Lee, E., Yoon, Y.S., and Kim, D.J., 2018, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing, ACS Sens., 3 (10), 2045–2060.

[19] Peng, Q., and De, S., 2013, Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage, Phys. Chem. Chem. Phys., 15 (44), 19427–19437.

[20] Han, S.A., Bhatia, R., and Kim, S.W., 2015, Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides, Nano Convergence, 2 (1), 17.

[21] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G., and Wang, F., 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10 (4), 1271–1275.

[22] Zhang, Z.Y., Si, M.S., Wang, Y.H., Gao, X.P., Sung, D., Hong, S., and He, J., 2014, Indirect-direct band gap transition through electric tuning in bilayer MoS2, J. Chem. Phys., 140 (17), 174707.

[23] Nevalaita, J., and Koskinen, P., 2018, Atlas for the properties of elemental two-dimensional metals, Phys. Rev. B, 97 (3), 035411.

[24] Baik, S.S., Im, S., and Choi, H.J., 2017, Work function tuning in two-dimensional MoS2 field-effect-transistors with graphene and titanium source-drain contacts, Sci. Rep., 7 (1), 45546.

[25] Zhang, F., Li, W., Ma, Y., Tang, Y., and Dai, X., 2017, Tuning the Schottky contacts at the graphene/WS2 interface by electric field, RSC Adv., 7 (47), 29350–29356.

[26] Roy, K., Padmanabhan, M., Goswami, S., Sai, T.P., Ramalingam, G., Raghavan, S., and Ghosh, A., 2013, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol., 8 (11), 826–830.

[27] Han, S.W., Kwon, H., Kim, S.K., Ryu, S., Yun, W.S., Kim, D.H., Hwang, J.H., Kang, J.S., Baik, J., Shin, H.J., and Hong, S.C., 2011, Band-gap transition induced by interlayer van der Waals interaction in MoS2, Phys. Rev. B, 84 (4), 045409.

[28] Gmitra, M., Kochan, D., Högl, P., and Fabian, J., 2016, Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides, Phys. Rev. B, 93 (15), 155104.

[29] Lee, C.S., and Kim, T.H., 2021, Large-Scale Preparation of MoS2/graphene composites for electrochemical detection of morin, ACS Appl. Nano Mater., 4 (7), 6668–6677.

[30] Wen, X., Chen, H., Wu, T., Yu, Z., Yang, Q., Deng, J., Liu, Z., Guo, X., Guan, J., Zhang, X., Gong, Y., Yuan, J., Zhang, Z., Yi, C., Guo, X., Ajayan, P.M., Zhuang, W., Liu, Z., Lou, J., and Zheng, J., 2018, Ultrafast probes of electron-hole transitions between two atomic layers, Nat. Commun., 9 (1), 1859.

[31] Liu, Y., Liu, C., Wang, X., He, L., Wan, X., Xu, Y., Shi, Y., Zhang, R., and Wang, F., 2018, Photoresponsivity of an all-semimetal heterostructure based on graphene and WTe2, Sci. Rep., 8 (1), 12840.

[32] Zhang, K., Fang, X., Wang, Y., Wan, Y., Song, Q., Zhai, W., Li, Y., Ran, G., Ye, Y., and Dai, L., 2017, Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure, ACS Appl. Mater. Interfaces, 9 (6), 5392–5398.

[33] Gao, A., Liu, E., Long, M., Zhou, W., Wang, Y., Xia, T., Hu, W., Wang, B., and Miao, F., 2016, Gate-tunable rectification inversion and photovoltaic detection in graphene/WSe2 heterostructures, Appl. Phys. Lett., 108 (22), 223501.

[34] Akinwande, D., Petrone, N., and Hone, J., 2014, Two-dimensional flexible nanoelectronics, Nat. Commun., 5 (1), 5678.

[35] Huo, N., Wei, Z., Meng, X., Kang, J., Wu, F., Li, S.S., Wei, S.H., and Li, J., 2015, Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2, J. Mater. Chem. C, 3 (21), 5467–5473.

[36] Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A.J., 1981, Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule, Phys. Rev. B, 24 (2), 864.

[37] Weinert, M., Wimmer, E., and Freeman, A.J., 1982, Total-energy all-electron density functional method for bulk solids and surfaces, Phys. Rev. B, 26 (8), 4571–4578.

[38] Perdew, J.P., Burke, K., and Ernzerhof, M., 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (18), 3865–3868.

[39] Bučko, T., Hafner, J., Lebègue, S., and Ángyán, J.G., 2010, Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der Waals corrections, J. Phys. Chem. A, 114 (43), 11814–11824.

[40] Nakamura, K., Ito, T., Freeman, A.J., Zhong, L., and Fernandez-de-Castro, J., 2003, Enhancement of magnetocrystalline anisotropy in ferromagnetic Fe films by intra-atomic noncollinear magnetism, Phys. Rev. B, 67 (1), 014420.

[41] Tao, P., Guo, H.H., Yang, T., and Zhang, Z.D., 2014, Stacking stability of MoS2 bilayer: An ab initio study, Chin. Phys. B, 23 (10), 106801.

[42] Rasmussen, F.A., and Thygesen, K.S., 2015, Computational 2D materials database: Electronic structure of transition-metal dichalcogenides and oxides, J. Phys. Chem. C, 119 (23), 13169–13183.

[43] Sachs, B., Britnell, L., Wehling, T.O., Eckmann, A., Jalil, R., Belle, B.D., Lichtenstein, A.I., Katsnelson, M.I., and Novoselov, K.S., 2013, Doping mechanisms in graphene-MoS2 hybrids, Appl. Phys. Lett., 103 (25), 251607.

[44] Singh, A.K., Kumar, P., Late, D.J., Kumar, A., Patel, S., and Singh, J., 2018, 2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects, Appl. Mater. Today, 13, 242–270.

[45] Ebnonnasir, A., Narayanan, B., Kodambaka, S., and Ciobanu, C.V., 2014, Tunable MoS2 bandgap in MoS2-graphene heterostructures, Appl. Phys. Lett., 105 (3), 031603.

[46] Liu, B., Wu, L.J., Zhao, Y.Q., Wang, L.Z., and Cai, M.Q., 2016, First-principles investigation of the Schottky contact for the two-dimensional MoS2 and graphene heterostructure, RSC Adv., 6 (65), 60271–60276.

DOI: https://doi.org/10.22146/ijc.75538

Article Metrics

Abstract views : 2326 | views : 1215

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.