Degradable Bioplastic Developed from Pine-Wood Nanocellulose as a Filler Combined with Orange Peel Extract

https://doi.org/10.22146/ijc.75520

Alyaa Farrah Dibha(1), Masruri Masruri(2*), Arie Srihardyastutie(3)

(1) Department of Chemistry, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
(2) Department of Chemistry, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
(3) Department of Chemistry, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
(*) Corresponding Author

Abstract


This research presents the degradable bioplastics developed from pinewood nanocellulose as a filler in PVA matrices. The steps involve the isolation and characterization of cellulose and nanocellulose. Meanwhile, the manufacturing of degradable bioplastic involves the combination of PVA, nanocellulose, and with or without orange peel extract. The effect of bioplastics without the addition of citric acid and orange peel extract is also reported as a comparison. It is found that orange peel extract improves the tensile strength (1708.54 kPa), elastic modulus (42.71 kPa), elongation (40%), and degradability (78.44% in 2 weeks) compared to bioplastic without the orange peel extract. These results indicate that orange peel extract acts as a reinforcing agent in PVA-nanocellulose bioplastic.


Keywords


pinewood-nanocellulose; degradable-bioplastic; orange peel extract

Full Text:

Full Text PDF


References

[1] Duhan, S.S., Khyalia, P., and Laura, J.S., 2022, "Plastic Waste Management in Rural Areas Around the World" in Plastic Waste Management: Turning Challenges into Opportunities, Eds. Pandey, S., and Manuja, S., Bharti Publications, New Delhi, India, 99–106.

[2] Pathak, S., Sneha, C.L.R., and Mathew, B.B., 2014, Bioplastics: Its timeline based scenario & challenges, J. Polym. Biopolym. Phys. Chem., 2 (4), 84–90.

[3] Fan, Y.V., Jiang, P., Tan, R.R., Aviso, K.B., You, F., Zhao, X., Lee, C.T., and Klemeš, J.J., 2022, Forecasting plastic waste generation and interventions for environmental hazard mitigation, J. Hazard. Mater., 424, 127330.

[4] Darus, N., Tamimi, M., Tirawaty, S., Muchtazar, M., Trisyanti, D., Akib, R., Condorini, D., and Ranggi, K., 2020, An overview of plastic waste recycling in the urban areas of Java Island in Indonesia, J. Environ. Sci. Sustainable Dev., 3 (2), 402–415.

[5] Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L., and Suh, S., 2020, Degradation rates of plastics in the environment, ACS Sustainable Chem. Eng., 8 (9), 3494–3511.

[6] Razali, M.N., Mohd Isa, S.N.E., Md Salehan, N.A., Musa, M., Abd Aziz, M.A., Nour, A.H., and Mohd Yunus, R., 2020, Formulation of emulsified modification bitumen from industrial wastes, Indones. J. Chem., 20 (1), 96–104.

[7] Panda, A.K., Singh, R.K., and Mishra, D.K., 2010, Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective, Renewable Sustainable Energy Rev., 14 (1), 233–248.

[8] Gan, P.G., Sam, S.T., bin Abdullah, M.F., and Omar, M.F., 2020, Thermal properties of nanocellulose‐reinforced composites: A review, J. Appl. Polym. Sci., 137 (11), 48544.

[9] Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., and Thomas, S., 2017, Recent developments on nanocellulose reinforced polymer nanocomposites: A review, Polymer, 132, 368–393.

[10] Ilyas, R.A., Sapuan, S.M., Norrahim, M.N.F., Tengku Yasim-Anuar, T.A., Kadier, A., Kalil, M.S., Atikah, M.S.N., Ibrahim, R., Asrofi, M., Abral, H., Nazrin, A., Syafiq, R., Aisyah, H.A., and Asyraf, M.R.M., 2020, "Nanocellulose/Starch Biopolymer Nanocomposites: Processing, Manufacturing, and Applications" in Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, Elsevier, Cambridge, US, 65–88.

[11] Kalia, S., Kaith, B.S., and Kaur, I., 2011, Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology, Springer, Heidelberg, Berlin.

[12] Awadhiya, A., Kumar, D., and Verma, V., 2016, Crosslinking of agarose bioplastic using citric acid, Carbohydr. Polym., 151, 60–67.

[13] Yoon, S.D., 2014, Cross-linked potato starch-based blend films using ascorbic acid as a plasticizer, J. Agric. Food Chem., 62 (8), 1755–1764.

[14] Tanjung, D.A., Jamarun, N., Arief, S., Aziz, H., Ritonga, A.H., and Isfa, B., 2022, Influence of LLDPE-g-MA on mechanical properties, degradation performance and water absorption of thermoplastic sago starch blends, Indones. J. Chem., 22 (1), 171–178.

[15] Marsi, N., Huzaisham, N.A., Hamzah, A.A., Zainudin, A.Z., Mohd Rus, A.Z., Leman, A.M., Rahmad, R., Mahmood, S., Abdul Rashid, A.H., Mohd Harun, D., and Darlis, N., 2019, Biodegradable plastic based on orange peel for packaging application, JDSE, 1 (2), 1–6.

[16] Medina Jaramillo, C., Gutiérrez, T.J., Goyanes, S., Bernal, C., and Famá, L., 2016, Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films, Carbohydr. Polym., 151, 150–159.

[17] Hiremani, V.D., Goudar, N., Gasti, T., Khanapure, S., Vanjeri, V.N., Sataraddi, S., D'souza, O.J., Vootla, S.K., Masti, S.P., Malabadi, R.B., and Chougale, R.B., 2022, Exploration of multifunctional properties of Piper betel leaves extract incorporated polyvinyl alcohol-oxidized maize starch blend films for active packaging applications, J. Polym. Environ., 30 (4), 1314–1329.

[18] Nasihin, Z.D., Masruri, M., Warsito, W., and Srihardyastutie, A., 2020, Preparation of nanocellulose bioplastic with a gradation color of red and yellow, IOP Conf. Ser.: Mater. Sci. Eng., 833, 012078.

[19] Astuti, R., Deoranto, P., and Aula, M.M., 2019, Productivity and environmental performance: An empirical evidence from a furniture factory in Malang City, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 230, 012064.

[20] Shaheen, T.I., and Emam, H.E., 2018, Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis, Int. J. Biol. Macromol., 107, 1599–1606.

[21] Sari, R.M., Torres, F.G., Troncoso, O.P., De‐la‐Torre, G.E., and Gea, S., 2021, Analysis and availability of lignocellulosic wastes: Assessments for Indonesia and Peru, Environ. Qual. Manage., 30 (4), 71–82.

[22] Masruri, M., Pangestin, D.N., Ulfa, S.M., Riyanto, S., Srihardyastutie, A., and Rahman, M.F., 2018, A potent Staphylococcus aureus growth inhibitor of a dried flower extract of Pinus merkusii Jungh & De Vriese and copper nanoparticle, IOP Conf. Ser.: Mater. Sci. Eng., 299, 012072.

[23] Lusiana, S.E., Srihardyastutie, A., and Masruri, M., 2019, Cellulose nanocrystal (CNC) produced from the sulphuric acid hydrolysis of the pine cone flower waste (Pinus merkusii Jungh Et De Vriese), J. Phys.: Conf. Ser., 1374, 012023.

[24] Hadi, Y.S., Herliyana, E.N., Mulyosari, D., Abdillah, I.B., Pari, R., and Hiziroglu, S., 2020, Termite resistance of furfuryl alcohol and imidacloprid treated fast-growing tropical wood species as function of field test, Appl. Sci., 10 (17), 6101.

[25] Bauli, C.R., Rocha, D.B., de Oliveira, S.A., and Rosa, D.S., 2019, Cellulose nanostructures from wood waste with low input consumption, J. Cleaner Prod., 211, 408–416.

[26] Pradhan, D., Jaiswal, A.K., and Jaiswal, S., 2022, Emerging technologies for the production of nanocellulose from lignocellulosic biomass, Carbohydr. Polym., 285, 119258.

[27] Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., and Hussin, M.H., 2020, Nanocellulose: From fundamentals to advanced applications, Front. Chem., 8, 392.

[28] Hastuti, N., Kanomata, K., and Kitaoka, T., 2018, Hydrochloric acid hydrolysis of pulps from oil palm empty fruit bunches to produce cellulose nanocrystals, J. Polym. Environ., 26 (9), 3698–3709.

[29] Ioelovich, M., 2008, Cellulose as a nanostructured polymer: A short review, BioResources, 3 (4), 1403–1418.

[30] Seta, F.T., An, X., Liu, L., Zhang, H., Yang, J., Zhang, W., Nie, S., Yao, S., Cao, H., Xu, Q., Bu, Y., and Liu, H., 2020, Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis, Carbohydr. Polym., 234, 115942.

[31] Agustin, M.B., Ahmmad, B., Alonzo, S.M.M., and Patriana, F.M., 2014, Bioplastic based on starch and cellulose nanocrystals from rice straw, J. Reinf. Plast. Compos., 33 (24), 2205–2213.

[32] Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., and Guan, G., 2018, Nanocellulose: Extraction and application, Carbon Resour. Convers., 1 (1), 32–43.

[33] M’Hiri, N., Ioannou, I., Ghoul, M., and Boudhrioua, M., 2015, Proximate chemical composition of orange peel and variation of phenols and antioxidant activity during convective air drying, J. New Sci., 9, 881-890.

[34] Yufinanda, A.R., Nur Laila, A.N., Nurusalam, A.M.R., and Fajar, Y., 2019, Utilization of orange peel waste (Citrus nobilis Lour.) as biogas for electricity source in isolated areas, Asia Young Scholar Summit (AYSS), Tianjin, China, May 17-18, 2019.

[35] Hassan, F.A., Elkassas, N., Salim, I., El-Medany, S., Aboelenin, S.M., Shukry, M., Taha, A.E., Peris, S., Soliman, M., and Mahrose, K., 2021, Impacts of dietary supplementations of orange peel and tomato pomace extracts as natural sources for ascorbic acid on growth performance, carcass characteristics, plasma biochemicals and antioxidant status of growing rabbits, Animals, 11 (6), 1688.

[36] Suhartini, M., Ernawati, E.E., Roshanova, A., Haryono, H., and Mellawati, J., 2020, Cellulose acetate of rice husk blend membranes: Preparation, morphology and application, Indones. J. Chem., 20 (5), 1061–1069.

[37] Mehmood, T., Khan, M.R., Shabbir, M.A., and Zia, M.A., 2018, Phytochemical profiling and HPLC quantification of citrus peel from different varieties, Prog. Nutr., 20 (Suppl. 1), 279–288.

[38] Hussein, Y., Loutfy, S.A., Kamoun, E.A., El-Moslamy, S.H., Radwan, E.M., and Elbehairi, S.E.I., 2021, Enhanced anti-cancer activity by localized delivery of curcumin form PVA/CNCs hydrogel membranes: Preparation and in vitro bioevaluation, Int. J. Biol. Macromol., 170, 107–122.

[39] Segal, L., Creely, J.J., Martin, A.E., and Conrad, C.M., 1959, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J., 29 (10), 786–794.

[40] Bali, G., Meng, X., Deneff, J.I., Sun, Q., and Ragauskas, A.J., 2015, The effect of alkaline pretreatment methods on cellulose structure and accessibility, ChemSusChem, 8 (2), 275–279.

[41] Cheng, Q., Wang, S., and Han, Q., 2009, Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization, J. Appl. Polym. Sci., 115 (5), 2756–2762.

[42] Abitbol, T., Rivkin, A., Cao, Y., Nevo, Y., Abraham, E., Ben-Shalom, T., Lapidot, S., and Shoseyov, O., 2016, Nanocellulose, a tiny fiber with huge applications, Curr. Opin. Biotechnol., 39, 76–88.

[43] Popescu, M.C., Popescu, C.M., Lisa, G., and Sakata, Y., 2011, Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods, J. Mol. Struct., 988 (1-3), 65–72.

[44] Sukmawan, R., Saputri, L.H., Rochmadi, R., and Rochardjo, H.S.B., 2019, The effects of the blending condition on the morphology, crystallinity, and thermal stability of cellulose microfibers obtained from bagasse, Indones. J. Chem., 19 (1), 166–175.

[45] Bano, S., and Negi, Y.S., 2017, Studies on cellulose nanocrystals isolated from groundnut shells, Carbohydr. Polym., 157, 1041–1049.

[46] Taflick, T., Schwendler, L.A., Rosa, S.M.L., Bica, C.I.D., and Nachtigall, S.M.B., 2017, Cellulose nanocrystals from acacia bark–Influence of solvent extraction, Int. J. Biol. Macromol., 101, 553–561.

[47] Gond, R.K., Gupta, M.K., and Jawaid, M., 2021, Extraction of nanocellulose from sugarcane bagasse and its characterization for potential applications, Polym. Compos., 42 (10), 5400–5412.

[48] Obele, C.M., Ejimofor, M.I., Atuanya, C.U., and Ibenta, M.E., 2021, Cassava stem cellulose (CSC)Nanocrystal for optimal methylene BlueBio sorption with response surface design, Curr. Res. Green Sustainable Chem., 4, 100067.

[49] Ejara, T.M., Balakrishnan, S., and Kim, J.C., 2021, Nanocomposites of PVA/cellulose nanocrystals: Comparative and stretch drawn properties, SPE Polym., 2 (4), 288–296.

[50] Salleh, E., Muhamad, I.I., and Khairuddin, N., 2009, Structural characterization and physical properties of antimicrobial (AM) starch-based films, World Acad. Sci. Eng. Technol., 55, 432-440.

[51] Guimarães, M., Botaro, V.R., Novack, K.M., Teixeira, F.G., and Tonoli, G.H.D., 2015, Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils, Ind. Crops Prod., 70, 72–83.

[52] Cano, A.I., Cháfer, M., Chiralt, A., and González-Martínez, C., 2015, Physical and microstructural properties of biodegradable films based on pea starch and PVA, J. Food Eng., 167, 59–64.

[53] Hernández-García, E., Vargas, M., González-Martínez, C., and Chiralt, A., 2021, Biodegradable antimicrobial films for food packaging: Effect of antimicrobials on degradation, Foods, 10 (6), 1256.



DOI: https://doi.org/10.22146/ijc.75520

Article Metrics

Abstract views : 5972 | views : 4531


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.