Effects of Various Parameters on the Antioxidant Activities of the Synthesized Heterocyclic Pyrimidinium Betaines
Fatiha Malki(1), Ali Alouache(2*), Soumia Krimat(3)
(1) Laboratoire de Recherche sur les Produits Bioactifs et Valorisation de la Biomasse (LPBVB), Ecole Normale Supérieure Kouba, Bp 92 16006 Alger, Algeria
(2) Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Kouba, Bp 92 16006 Alger, Algeria
(3) Laboratoire de Recherche sur les Produits Bioactifs et Valorisation de la Biomasse (LPBVB), Ecole Normale Supérieure Kouba, Bp 92 16006 Alger, Algeria
(*) Corresponding Author
Abstract
Betaine derivatives are widely used in cosmetic, industrial uses, biology and other scientific fields. Pyrimidinium betaine is a special class of bioactive heterocyclics. They have interesting antioxidant and free radical scavenging activities. This work aims to examine the influence of some parameters on the antioxidant activity of some synthesized betaines containing pyrimidine ring. Four pyrimidinium betaines: monocyclic, bicyclics, and one with a fatty alkyl chain were synthesized from condensation of 2-aminopyrimidine or amidine derivatives with malonic esters, and their antioxidant capacity was evaluated. The effects of concentration, reaction time and temperature on their antioxidant activities were investigated by three common methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, ferric reducing antioxidant power (FRAP) and β-carotene bleaching. The results showed that all pyrimidinium betaines exhibited antioxidant activities in different assays. In the DPPH and reducing power assays, antioxidant activity increased with concentration, whereas in the β-carotene/linoleic acid system, it increased with temperature. On the other hand, the DPPH assay showed an increase in antioxidant capacity over time, while the β-carotene bleaching assay showed a decrease. These results indicate that the antioxidant activity differs depending on the method used and that the various factors affect the antioxidant activity in a different order.
Keywords
Full Text:
Full Text PDFReferences
[1] Sharifi-Rad, J., Hoseini-Alfatemi, S.M., Miri, A., Sharifi-Rad, M., Soufi, L., Sharifi-Rad, M., Setzer, W.N., Hoseini, M., Sharifi-Rad, M., and Rokni, M., 2015, Phytochemical analysis, antioxidant and antibacterial activities of various extracts from leaves and stems of Chrozaphora tinctoria, Environ. Exp. Biol., 13, 169–175.
[2] Papuc, C., Goran, G.V., Predescu, C.N., and Nicorescu, V., 2016, Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review, Compr. Rev. Food Sci. Food Saf., 16 (1), 96–123.
[3] Alkadi, H., 2020, A review on free radicals and antioxidants, Infect. Disord.: Drug Targets, 20 (1), 16–26.
[4] Marinova, E., Georgiev, L., Totseva, I., Seizova, K., and Milk, T., 2013, Antioxidant activity and mechanism of action of some synthesised phenolic acid amides of aromatic amines, Czech J. Food Sci., 31, 5–13.
[5] Alam, M.N., Bristi, N.J., and Rafiquzzaman, M., 2013, Review on in vivo and in vitro methods evaluation of antioxidant activity, Saudi Pharm. J., 21 (2), 143–152.
[6] Gulcin, İ., 2020, Antioxidants and antioxidant methods: An updated overview, Arch. Toxicol., 94 (3), 651–715.
[7] Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., and Lewandowski, W., 2021, Recent developments in effective antioxidants: The structure and antioxidant properties, Materials, 14 (8), 1984.
[8] Pisoschi, A.M., Pop, A., Iordache, F., Stanca, L., Predoi, G., and Serban, A.I., 2021, Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status, Eur. J. Med. Chem., 209, 112891.
[9] Jaman, M.S., Alam, M.S., Rezwan, M.S., Husna, A.U., Islam, M.R., and Sayeed, M.A., 2017, Comparison of total antioxidant activity between fresh and commercial mango juices available in Bangladesh, GSC Biol. Pharm. Sci., 1 (2), 26–33.
[10] Blois, M.S., 1958, Antioxidant determinations by the use of stable free radical, Nature, 181 (4617), 1199–1200.
[11] Brand-Williams, W., Cuvelier, M.E., and Berset, C., 1995, Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 28 (1), 25–30.
[12] Nsimba, Z.F., Paquot, M., Mvumbi, L.G., and Deleu, M., 2010, Les dérivés tensioactifs de la glycine bétaïne: Méthodes de synthèse et potentialités d’utilisation, Biotechnol., Agron., Soc. Environ., 14 (4), 737–748.
[13] Zakanda, F.N., Laurent, P., Paquot, M., Lelo, G.M., and Deleu, M., 2011, Alkylbetainate chlorides: Synthesis and behavior of monolayers at the air-water interface, Thin Solid Films, 520 (1), 344–350.
[14] Breslawec, T.E., and Gottschalck, H., 2012, International Cosmetic Ingredient Dictionary and Handbook: INCI name monographs I-S, Volume 2, 14th Ed., Personal Care Products Council, Washington DC.
[15] Birnie, C.R., Malamud, D., and Schnaare, R.L., 2000, Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides with variations in chain length, Antimicrob. Agents Chemother., 44 (9), 2514–2517.
[16] Sharma, V., Chitranshi, N., and Agarwal, A.K., 2014, Significance and biological importance of pyrimidine in the microbial world, Int. J. Med. Chem., 2014, 202784.
[17] Malki, F., Touati, A., and Moulay, S., 2015, Stability of mesoionic pyrimidinium betaines in aqueous media, Chem. J., 5 (6), 123–126.
[18] Koch, A., Jonas, U., Ritter, H., and Spiess, H.W., 2004, Extended mesoionic systems: Synthesis and characterization of monocyclic, polycyclic and macrocyclic pyrimidinium-olate derivatives and their photochemical behavior, Tetrahedron, 60 (44), 10011–10018.
[19] Munteanu, I.G., and Apetrei, C., 2021, Analytical methods used in determining antioxidant activity: A review, Int. J. Mol. Sci., 22 (7), 3380.
[20] Malki, F., Touati, A., and Moulay, S., 2013, Antioxidant activity of two mesomeric heterocyclic betaines containing a pyrimidine moiety, Pertanika J. Trop. Agric. Sci., 36 (4), 393–402.
[21] Malki, F., and Touati, A., 2019, Study of antioxidant activity of pyrimidinium betaines by DPPH radical scavenging method, J. Anal. Pharm. Res., 8 (2), 33–36.
[22] Malki, F., Touati, A., Moulay, S., and Baltas, M., 2016, Evaluation of antioxidant activity of some mesoionic pyrimidinium betaines by three different methods, Int. J. Chem. Eng. Appl., 7 (6), 373–377.
[23] Antolovich, M., Prenzler, P.D., Patsalides, E., McDonald, S., and Robards, K., 2002, Methods for testing antioxidant activity, Analyst, 127 (1), 183–198.
[24] Tschitschibabin, A.E., 1924, Tautomerie des α-amino-pyridins, II: Über die bildung von bicyclischen derivaten des α-amino-pyridins, Ber. Dtsch. Chem. Ges., 57 (7), 1168–1172.
[25] Dvortsák, P., Resofszki, G., Huhn, M., Zalántai, L., and Kiss, A.I., 1976, Reactions of pentachlorophenyl esters of malonic acid derivatives—II: Preparation and investigation of pyrimidine betaines, Tetrahedron, 32 (17), 2117–2120.
[26] Malki, F., Touati, A., Rahal, S., and Moulay, S., 2011, Total synthesis of monocyclic pyrimidinium betaines with fatty alkyl chain, Asian J. Chem., 23 (3), 961–967.
[27] Malki, F., Touati, A., and Moulay, S., 2017, Comparative study of antioxidant activity of some amides, J. Anal. Pharm. Res., 5 (3), 00143.
[28] Baliyan, S., 2022, Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa, Molecules, 27 (4), 1326.
[29] Malki, F., Touati, A., and Moulay, S., 2014, Extraction and recrystallization of mesoionic pyrimidinium betaines, Int. J. Chem. Eng. Appl., 5 (2), 151–154.
[30] Malki, F., Touati, A., and Moulay, S., 2015, Use of column chromatography for quantitative isolation of mesoionic pyrimidinium betaines, Int. J. Res. Chem. Metall. Civ. Eng., 2 (1), 29–32.
[31] Arró-Díaz, D.J., Castelnaux-Ochoa, N., Ochoa-Pacheco, A., and Do-Nascimento, Y.M., 2021, Antioxidant activity of bioactive compounds isolated from leaves and bark of Gymnanthes lucida Sw, Rev. Cubana Quim., 33 (1), 22–39.
[32] Sun, H., Yuan, X., Zhang, Z., Su, X., and Shi, M., 2018, Thermal processing effects on the chemical constituent and antioxidant activity of okara extracts using subcritical water extraction, J. Chem., 2018, 6823789.
[33] Singh, R., Shushni, M.A.M., and Belkheir, A., 2015, Antibacterial and antioxidant activities of Mentha piperita L., Arabian J. Chem., 8 (3), 322–328.
[34] Gülçin, İ., 2012, Antioxidant activity of food constituents: An overview, Arch. Toxicol., 86 (3), 345–391.
[35] Mitic, V., Jovanovic, V.S., Dimitrijevic, M., Cvetkovic, J., and Stojanovic, G., 2013, Effect of food preparation technique on antioxidant activity and plant pigment content in some vegetables species, J. Food Nutr. Res., 1 (6), 121–127.
[36] Sharma, K.D., Karki, S., and Thakur, N.S., 2012, Chemical composition, functional properties and processing of carrot—A review, J. Food Sci. Technol., 49 (1), 22–32.
[37] Fuentealba, C., Gálvez, L., Cobos, A., Olaeta, J.A., Defilippi, B.G., Chirinos, R., Campos, D., and Pedreschi, R., 2016, Characterization of main primary and secondary metabolites and in vitro antioxidant and antihyperglycemic properties in the mesocarp of three biotypes of Pouteria lucuma, Food Chem., 190, 403–411.
[38] Tepe, B., Sokmen, M., Akpulat, H.A., and Sokmen, A., 2006, Screening of the antioxidant potentials of six Salvia species from Turkey, Food Chem., 95 (2), 200–204.
[39] Moure, A., Franco, D., Sineiro, J., Dominguez, H., Nunez, M.J., and Lema, J.M., 2000, Evaluation of extracts from Gevuina avellana hulls as antioxidants, J. Agric. Food Chem., 48 (9), 3890–3897.
[40] Réblová, Z., 2012, Effect of temperature on the antioxidant activity of phenolic acids, Czech J. Food Sci., 30 (2), 171–177.
DOI: https://doi.org/10.22146/ijc.74803
Article Metrics
Abstract views : 2427 | views : 1280Copyright (c) 2022 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.