Characterization of Lignin Peroxidase from the Suspected Novel Strain Phanerochaete chrysosporium ITB Isolate
Evi Susanti(1*), Tri Ardyati(2), Suharjono Suharjono(3), Aulanni'am Aulanni'am(4)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, East Java, Indonesia; Department of Biotechnology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, East Java, Indonesia
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
(*) Corresponding Author
Abstract
This study was aimed to characterize lignin peroxidase (LiP) obtained from Phanerochaete chrysosporium ITB isolate. The characterizations included molecular weight, the pH and optimum working temperature of the crude extract of the enzyme, the temperature stability, the effect of metal ions and inhibitors, their precipitation with ethanol, and the storage stability. The LiP of P. chrysosporium ITB isolates was 34 kDa. The crude extract of LiP displays high activity at pH between 3 until 5 and 26–32 °C, has good thermal stability at 26–32 °C for 20 h. The activity is affected by Pb2+, K+, Co2+, Fe2+, Cd2+, Mg2+, and Cu2+ EDTA, Na+, Cr3+, Hg2+, NaN3, Ni2+, and Ca2+ ions, is not affected by Mn2+ and Zn2+ ions, precipitated with the optimum ethanol at 64% ethanol saturation which results in an increase in specific activity of 2.3 times. The crude extract storage at 0 °C is more stable than the precipitate resulting from ethanol precipitation and resuspension from ethanol precipitation. These results strengthen that LiP from P. chrysosporium is another LiP isoenzyme that can be used for bioremediation processes. Unfortunately, the concentration using the ethanol precipitation method has not been effective, so further studies using other methods should be required.
Keywords
Full Text:
Full Text PDFReferences
[1] Khatoon, N., Jamal, A., and Ali, M.I., 2019, Lignin peroxidase isoenzyme: A novel approach to biodegrade the toxic synthetic polymer waste, Environ. Technol., 40 (11), 1366–1375.
[2] Zeng, G.M., Zhao, M.H., Huang, D.L., Lai, C., Huang, C., Wei, Z., Xu, P., Li, N.J., Zhang, C., Li, F.L., and Cheng, M., 2013, Purification and biochemical characterization of two extracellular peroxidases from Phanerochaete chrysosporium responsible for lignin biodegradation, Int. Biodeterior. Biodegrad., 85, 166–172.
[3] Coconi-Linares, N., Magaña-Ortíz, D., Guzmán-Ortiz, D.A., Fernández, F., Loske, A.M., and Gómez-Lim., M.A., 2014, High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium, Appl. Microbiol. Biotechnol., 98 (22), 9283–9294.
[4] Matityahu, A., Sitruk, A., Hadar, Y., and Belinky, P.A., 2015, Factors affecting the induction of lignin peroxidase in manganese-deficient cultures of the white rot fungus Phanerochaete chrysosporium, Adv. Microbiol., 5 (2), 83–92.
[5] da Silva Vilar, D., Bilal, M., Bharagava, R.N., Kumar, A., Kumar Nadda, A., Salazar‐Banda, G.R., Eguiluz, K.I.B., and Romanholo Ferreira, L.F., 2022, Lignin‐modifying enzymes: A green and environmental responsive technology for organic compound degradation, J. Chem. Technol. Biotechnol., 97 (2), 327–342.
[6] Biko, O.D., Viljoen-Bloom, M., and van Zyl, W.H., 2020, Microbial lignin peroxidases: Applications, production challenges and future perspectives, Enzyme Microb. Technol., 141, 109669.
[7] Vandana, T., Kumar, S.A., Swaraj, S., and Manpal, S., 2019, Purification, characterization, and biodelignification potential of lignin peroxidase from Immobilized Phanerochaete chrysosporium, BioResources, 14 (3), 5380–5399.
[8] Istikowati, W.T., and Marsoemb, S.N., 2012, Phanerochaete chrysosporium Burds inoculation to improve the physical properties of kapok pulp, Jurnal Sains dan Terapan Kimia, 6 (1), 87–92.
[9] Imsya, A., Laconi, E.B., Wiryawan, K.G., and Widyastuti, Y., 2014, Biodegradasi lignoselulosa dengan Phanerochaete chrysosporium terhadap perubahan nilai gizi pelepah sawit, Jurnal Peternakan Sriwijaya, 3 (2), 12–19.
[10] Dewi, F., 2016, Pemanfaatan Hasil Biodelignifikasi Pelepah Sawit menggunakan Kapang Phanerochaete chrysosporium sebagai Pengganti Hijauan Pakan pada Ternak Kambing, Dissertation, Faculty of Animal Husbandry, Andalas University, Padang, Indonesia.
[11] Falade, A.O., Nwodo, U.U., Iweriebor, B.C., Green, E., Mabinya, L.V., and Okoh, A.I., 2017, Lignin peroxidase functionalities and prospective applications, MicrobiologyOpen, 6 (1), e00394.
[12] Singh, A.K., Bilal, M., Iqbal, H.M.N., and Raj, A., 2021, Lignin peroxidase in focus for catalytic elimination of contaminants — A critical review on recent progress and perspectives, Int. J. Biol. Macromol., 177, 58–82.
[13] Susanti, E., Suharjono, S., Ardyati, T., and Aulani’am, A., 2015, Phylogenetic analysis of Phanerochaete chrysosporium ITB isolate using internal transcribed spacer (ITS) sequence, Int. J. ChemTech Res., 8 (6), 654–658.
[14] Susanti E., Ardyati, T., Suharjono, S., and Aulani’am, A., 2016, Optimizing of lignin peroxidase production by the suspected novel strain of Phanerochaete chrysosporium ITB isolate, Int. J. ChemTech Res., 9 (11), 24–33.
[15] Pham, L.T.M., Deng, K., Northen, T.R., Singer, S.W., Adams, P.D., Simmons, B.A., and Sale, K.L., 2021, Experimental and theoretical insights into the effects of pH on catalysis of bond-cleavage by the lignin peroxidase isozyme H8 from Phanerochaete chrysosporium, Biotechnol. Biofuels, 14 (1), 108.
[16] Robinson, P.K., 2015, Enzymes: Principles and biotechnological applications, Essays Biochem., 59, 1–41.
[17] Sharma, J.K., Yadav, M., Singh, N.P., and Yadav, K.D.S., 2011, Purification and characterisation of lignin peroxidase from Pycnoporus sanguineus MTCC-137, Appl. Biochem. Microbiol., 47 (5), 532.
[18] Giap, V.D., Duc, H.T., Huong, P.T.M., Hanh, D.T., Nghi, D.H., Duy, V.D., and Quynh, D.T., 2022, Purification and characterization of lignin peroxidase from white-rot fungi Pleurotus pulmonarius CPG6 and its application in decolorization of synthetic textile dyes, J. Gen. Appl. Microbiol., advpub, 2022.05.005.
[19] Liu, S., Li, Z., Yu, B., Wang, S., Shen, Y., and Cong, H., 2020, Recent advances on protein separation and purification methods, Adv. Colloid Interface Sci., 284, 102254.
[20] Ugwu, S.O., and Apte, S.P., 2004, The effect of buffers on protein conformational stability, Pharm. Technol., 28 (3), 86–109.
[21] Wang, P., Hu, X., Cook, S., Begonia, M., Lee, K.S., and Hwang. H.M., 2008, Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase, World J. Microbiol. Biotechnol., 24 (10), 2205–2212.
[22] Ghasemi, F., Tabandeh, F., Bambai, B., and Rao, K.R.S., 2010, Decolorization of different azo dyes by Phanerochaete chrysosporium RP78 under optimal condition, Int. J. Environ. Sci. Technol, 7 (3), 457–464.DOI: https://doi.org/10.22146/ijc.74637
Article Metrics
Abstract views : 2140 | views : 1614Copyright (c) 2022 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.