Improving the Electrical Conductivity of the Composite Comprising Bismuth Oxide, Activated Carbon, and Graphite for Use as a Battery Anode

https://doi.org/10.22146/ijc.74155

Yayuk Astuti(1*), Faradina Azahra Zaqia(2), Aulia Zahra Ekaningsih(3), Gunawan Gunawan(4), Adi Darmawan(5)

(1) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(2) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(3) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(4) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(5) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(*) Corresponding Author

Abstract


This research is concerned with the synthesis and characterization of a composite material that may be used as a battery electrode. Bismuth oxide (Bi2O3) was synthesized from Bi(NO3)3·5H2O, Na2SO4, and NaOH mixed with commercial activated carbon and graphite. The composite formation process was carried out using the hydrothermal method at 110 °C for 5 h. The characterization data indicated the composites produced contained Bi2O3 with a monoclinic crystal system, and Bi2O3 particles were evenly distributed in the composite. The composites were characterized to be mesoporous, with the electrical conductivity reaching 10−1 S m−1. The development of this composite material has potential applications in the field of energy storage, particularly in the development of battery anode.


Keywords


bismuth oxide; commercial activated carbon; graphite doping; battery anode

Full Text:

Full Text PDF


References

[1] Linden, D., and Reddy, T.B., 2002, Linden’s Handbook of Batteries, 4th Ed., McGraw-Hill Education, New York, US.

[2] Li, Y., Song, J., Ji, Y., Lu, X., Tian, Q., Chen, J., and Sui, Z., 2022, Bismuth/bismuth trioxide with a dual-carbon support for high and long life lithium storage, J. Phys. Chem. Solids, 163, 110562.

[3] Ud Din, M.A., Li, C., Zhang, L., Han, C., and Li, B., 2021, Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries, Mater. Today Phys., 21, 100486.

[4] Fu, H., Shi, C., Nie, J., Wang, J., and Yao, S., 2022, Bi2O3 nanospheres coated in electrospun carbon spheres derived Bi@C used as anode materials for lithium-ion batteries, J. Alloys Compd., 918, 165666.

[5] Li, Y., Trujillo, M.A., Fu, E., Patterson, B., Fei, L., Xu, Y., Deng, S., Smirnov, S., and Luo, H., 2013, Bismuth oxide: A new lithium-ion battery anode, J. Mater. Chem. A, 1 (39), 12123–12127.

[6] Astuti, Y., Mei, R., Darmawan, A., Arnelli, A., and Widiyandari, H., 2022, Enhancement of electrical conductivity of bismuth oxide/activated carbon composite, Sci. Iran., 29 (6), 3119–3131.

[7] Astuti, Y., Musthafa, F., Arnelli, A., and Nurhasanah, I., 2022, French fries-like bismuth oxide: Physicochemical properties, electrical conductivity and photocatalytic activity, Bull. Chem. React. Eng. Catal., 17 (1), 146–156.

[8] Taer, E., Taslim, R., Putri, A.W., Apriwandi, A., and Agustino, A., 2018, Activated carbon electrode made from coconut husk waste for supercapacitor application, Int. J. Electrochem. Sci., 13 (12), 12072–12084.

[9] Kim, T., Jo, C., Lim, W.G., Lee, J., Lee, J., and Lee, K.H., 2016, Facile conversion of activated carbon to battery anode material using microwave graphitization, Carbon, 104, 106–111.

[10] Zhang, H., Yang, Y., Ren, D., Wang, L., and He, X., 2021, Graphite as anode materials: Fundamental mechanism, recent progress and advances, Energy Storage Mater., 36, 147–170.

[11] Mahtab, S., Joshi, P., Arya, B., Zaidi, M.G.H., and Siddiqui, T.I., 2020, Effect of humidity on electrical conductivity of graphite nanocomposite based electrodes: A review, Mater. Sci. Res. India, 17 (1), 8–15.

[12] Budko, O., Butenko, O., Chernysh, O., Khomenko, V., Tverdokhlib, V., and Barsukov, V., 2022, Effect of grain composition of natural graphites on electrical conductivity of graphite-based composite materials, Mater. Today: Proc., 50, 535–538.

[13] Astuti, Y., Aprialdi, F., Arnelli, A., and Haryanto, I., 2019, Synthesis of activated carbon/bismuth oxide composite and its characterization for battery electrode, IOP Conf. Ser.: Mater. Sci. Eng., 509 (1), 012153

[14] Wu, C., Shen, L., Huang, Q, and Zhang, Y.C., 2011, Hydrothermal synthesis and characterization of Bi2O3 nanowires, Mater. Lett., 65 (7), 1134–1136.

[15] Astuti, Y., Farihah, D.N., Ekaningsih, A.Z., and Darmawan, A., 2023, Electrochemical performance of one-pot hydrothermal-derived bismuth oxide/commercial activated carbon/graphite composite, Mater. Sci. Technol., 39 (14), 1802–1815.

[16] Astuti, Y., Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Hakim, A.R., and Bhaduri, G., 2016, Synthesis of α-Bismuth oxide using solution combustion method and its photocatalytic properties, IOP Conf. Ser.: Mater. Sci. Eng., 107 (1), 012006.

[17] Astuti, Y., Elesta, P.P., Widodo, D.S., Widiyandari, H., and Balgis, R., 2020, Hydrazine and urea fueled-solution combustion method for Bi2O3 synthesis: Characterization of physicochemical properties and photocatalytic activity, Bull. Chem. React. Eng. Catal., 15 (1), 104–111.

[18] Das, D., Samal, D.P., and Meikap, B.C., 2015, Preparation of activated carbon from green coconut shell and its characterization, J. Chem. Eng. Process Technol., 6 (5), 1–7.

[19] Sastrohamidjojo, H., 2018, Dasar-dasar Spektroskopi, Gajah Mada University Press, Yogyakarta, Indonesia.

[20] Das, T.R., Patra, S., Madhuri, R., and Sharma, P.K., 2018, Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes, J. Colloid Interface Sci., 509, 82–93.

[21] Gondal, M.A., Saleh, T.A., and Drmosh, Q., 2012, Optical properties of bismuth oxide nanoparticles synthesized by pulsed laser ablation in liquids, Sci. Adv. Mater., 4 (3-4), 507–510.

[22] Bandyopadhyay, S., and Dutta, A., 2017, Thermal, optical and dielectric properties of phase stabilized δ - Dy-Bi2O3 ionic conductors, J. Phys. Chem. Solids, 102, 12–20.

[23] Ikemoto, Y., Harada, Y., Tanaka, M., Nishimura, S., Murakami, D., Kurahashi, N., Moriwaki, T., Yamazoe, K., Washizu, H., Ishii, Y., and Torii, H., 2022, Infrared spectra and hydrogen-bond configurations of water molecules at the interface of water-insoluble polymers under humidified conditions, J. Phys. Chem. B, 126 (22), 4143–4151.

[24] Deng, Z., Liu, T., Chen, T., Jiang, J., Yang, W., Guo, J., Zhao, J., Wang, H., and Gao, L., 2017, Enhanced electrochemical performances of Bi2O3/rGO nanocomposite via chemical bonding as anode materials for lithium ion batteries, ACS Appl. Mater. Interfaces, 9 (14), 12469–12477.

[25] Nurdiansyah, H., and Susanti, D., 2013, Pengaruh variasi temperatur karbonisasi dan temperatur aktivasi fisika dari elektroda karbon aktif tempurung kelapa dan tempurung kluwak terhadap nilai kapasitansi electric double layer capacitor (EDLC), J. Tek. ITS, 2 (1), 13–18.

[26] Zhang, J., and Delichatsios, M., 2011, TGA maximum heat release rate and mass loss rate and comparison with the cone calorimeter, Fire Saf. Sci., Proc. Int. Symp., 10, 1333–1346.

[27] Ma, M.G., Zhu, J.F., Sun, R.C., and Zhu, Y.J., 2010, Microwave-assisted synthesis of hierarchical Bi2O3 spheres assembled from nanosheets with pore structure, Mater. Lett., 64 (13), 1524–1527.

[28] Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., 2007, Thermal stability of Bi2O3, Russ. J. Inorg. Chem., 52 (12), 1822–1829.

[29] Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S., 2015, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (9-10), 1051–1069.

[30] Agrawal, A., Janakiraman, S., Biswas, K., Venimadhav, A., Srivastava, S.K., and Ghosh, S., 2019, Understanding the improved electrochemical performance of nitrogen-doped hard carbons as an anode for sodium ion battery, Electrochim. Acta, 317, 164–172.

[31] Alves, A.M., Cavalcanti, S.N., da Silva, M.P., Freitas, D.M., Agrawal, P., and de Mélo, T.J.A., 2021, Electrical, rheological, and mechanical properties copolymer/carbon black composites, J. Vinyl Addit. Technol., 27 (2), 445–458.

[32] Kim, M., Lee, C., and Jang, J., 2014, Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity, Adv. Funct. Mater., 24 (17), 2489–2499.



DOI: https://doi.org/10.22146/ijc.74155

Article Metrics

Abstract views : 1042 | views : 676


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.