Review on Anticancer Activity of Essential Metal Dithiocarbamate Complexes

https://doi.org/10.22146/ijc.73738

Rizal Irfandi(1), Indah Raya(2*), Ahyar Ahmad(3), Ahmad Fudholi(4), Hasnah Natsir(5), Desy Kartina(6), Harningsih Karim(7), Santi Santi(8), Subakir Salnus(9)

(1) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km 10 Tamalanrea, Makassar 90245, South Sulawesi, Indonesia; Department of Biology Education, Faculty of Teacher Training and Education, Universitas Puangrimaggalatung, Sengkang 90915, South Sulawesi, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km 10 Tamalanrea, Makassar 90245, South Sulawesi, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km 10 Tamalanrea, Makassar 90245, South Sulawesi, Indonesia
(4) Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor 43600, Malaysia; Research Center for Electrical Power and Mechatronics, Indonesian Institute of Science (LIPI), Kawasan PUSPIPTEK, Serpong, Tangerang Selatan 15314, Banten, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km 10 Tamalanrea, Makassar 90245, South Sulawesi, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km 10 Tamalanrea, Makassar 90245, South Sulawesi, Indonesia
(7) Department of Pharmacy, School of Pharmacy YAMASI, Jl. Mapala 2 Blok D5 No.10, Makassar 90222, Indonesia
(8) Medical Laboratory Technology, Faculty of Health Technology, Megarezky University, Makassar 90234, Indonesia
(9) Department of Medical Laboratory Technology, College of Panrita Husada Health Science, Jl. Panggala, Bulukumba 92561, South Sulawesi, Indonesia
(*) Corresponding Author

Abstract


The importance of essential metal ions and their metal complexes in the creation of prospective medical therapies has long been recognized. In chemistry, molecular biology, and medicinal fields; the interaction of metal complexes with DNA has been a subject of study. The dithiocarbamate essential metal complex is described extensively in the literature for its various benefits and advantages. With proper use of ligands, it is proven to increase the cytotoxic activity of metal complexes against cancer cells. Some researches have shown significant progress regarding the biological activities of the dithiocarbamate essential metal complex as antimicrobial, antioxidant, and anticancer agents. Metal complexes form complexes with dithiocarbamate ligands with unique structural variations. In this study, we presented an overview of the cytotoxic effects of some dithiocarbamate essential metal complexes on cancer cells, as well as fresh approaches to the design of essential metal-based therapeutics containing dithiocarbamate and molecular targets in cancer therapy. This review may provide an update on recent developments in the medicinal use of essential metals with dithiocarbamate ligands, carried out to identify recent relevant literature. Finally, we predict that the essential metal complexed with dithiocarbamate can be a new breakthrough in the future development of cancer drugs.


Keywords


cytotoxic activity; dithiocarbamate; essential metal; therapeutics; cisplatin

Full Text:

Full Text PDF


References

[1] Adjiri, A., 2017, DNA Mutations may not be the cause of cancer, Oncol. Ther., 5 (1), 85–101.

[2] Zhang, J., Ye, Z., Tew, K.D., and Townsend, D.M., 2021, Cisplatin chemotherapy and renal function, Adv. Cancer Res., 152, 305–327.

[3] Ghosh, S., 2019, Cisplatin: The first metal based anticancer drug, Bioorg. Chem., 88, 102925.

[4] Dasari, S., and Tchounwou, P.B., 2014, Cisplatin in cancer therapy: Molecular mechanisms of action, Eur. J. Pharmacol., 740, 364–378.

[5] Yang, L., Tan, J., Wang, B.C., and Zhu, L.C., 2014, Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex, Chin. J. Nat. Med., 12 (12), 937–942.

[6] Oun, R., Moussa, Y.E., and Wheate, N.J., 2018, The side effects of platinum-based chemotherapy drugs: A review of chemists, Dalton Trans., 47 (19), 6645–6653.

[7] Hong, M., Geng, H., Niu, M., Wang, F., Li, D., Liu, J., and Yin, H., 2014, Organotin(IV) complexes derived from Schiff base N′-[(1E)-(2-hydroxy-3-methoxyphenyl)methylidene]pyridine-4-carbohydrazone: Synthesis, in vitro cytotoxicities and DNA/BSA interaction, Eur. J. Med. Chem., 86, 550–561.

[8] Adeyemi, J.O., and Onwudiwe, D.C., 2018, Organotin(IV) dithiocarbamate complexes: Chemistry and biological activity, Molecules, 23 (10), 2571.

[9] Ahmad, R., Khan, M.A., Srivastava, A.N., Gupta, A., Srivastava, A.., Jafri, T.R., Siddiqui, Z., Chaubey, S., Khan, T., and Srivastana, A.K., 2020, Anticancer potential of dietary natural products: A comprehensive review, Anti-Cancer Agents Med. Chem., 20 (2), 122–236.

[10] Lubiński, J., Jaworowska, E., Derkacz, R., Marciniak, W., Białkowska, K., Baszuk, P., Scott, R.J., and Lubiński, J.A., 2021, Survival of laryngeal cancer patients depending on zinc serum level and oxidative stress genotypes, Biomolecules, 11 (6), 865.

[11] Irfandi, R., Ruslang, R., Raya, I., Yani, A., Nasir, M., Nurcaya, N., and Jarre, S., 2021, Docking molecular dari kompleks Zn(II)amina (prolin)dithiokarbamat terhadap reseptor estrogen-α, Al-Kimia, 9 (2), 182–187.

[12] Tomasello, M.F., Nardon, C., Lanza, V., Di Natale, G., Pettenuzzo, N., Salmaso, S., Milardi, D., Caliceti, P., Pappalardo, G., and Fregona, D., 2017, New comprehensive studies of a gold(III) dithiocarbamate complex with proven anticancer properties: Aqueous dissolution with cyclodextrins, pharmacokinetics and upstream inhibition of the ubiquitin-proteasome pathway, Eur. J. Med. Chem., 138, 115–127.

[13] Al-Jaroudi, S.S., Altaf, M., Seliman, A.A., Yadav, S., Arjmand, F., Alhoshani, A., Korashy, H.M., Ahmad, S., and Anvarhusein, I.A., 2017, Synthesis, characterization, in vitro cytotoxicity and DNA interaction study of phosphanegold(I) complexes with dithiocarbamate ligands, Inorg. Chim. Acta, 464, 37–48.

[14] Subin Kumar, K., Reena, V.N., and Aravindakshan, K.K., 2021, Synthesis, anticancer and larvicidal activities of a novel Schiff base ligand, 3-((2-((1-(4-hydroxyphenyl)ethylidene)amino)ethyl)imino)-N-(p-tolyl)butanamide and its Mn(II), Fe(III), Co(II), Ni(II) and Zn(II) complexes, Results Chem., 3, 100166.

[15] Qin, J.L., Shen, W.Y., Chen, Z.F., Zhao, Z.F., Zhao, L.F., Qin, Q.P., Yu, Y.C., and Liang, H., 2017, Oxoaporphine metal complexes (CoII, NiII, ZnII) with high antitumor activity by inducing mitochondria mediated apoptosis and S-phase arrest in HepG2, Sci. Rep., 7 (1), 46056.

[16] Arjmand, F., Parveen, S., and Mohapatra, D.K., 2012, Synthesis, characterization of Cu(II) and Zn(II) complexes of proline-glycine and proline-leucine tetrapeptides: In vitro DNA binding and cleavage studies, Inorg. Chim. Acta, 388, 1–10.

[17] Irfandi, R., Prihantono, P., and Raya, I., 2019, Synthesis, characterization and cytotoxic activity of Zn(II) cysteine dithiocarbamate in breast cancer (MCF-7), Int. Res. J. Pharm., 10 (4), 69–72.

[18] Takeda, A., Fujii, H., Minamino, T., and Tamano, H., 2014, Intracellular Zn2+ signaling in cognition, J. Neurosci. Res., 92 (7), 819–824.

[19] Matsukura, T., and Tanaka, H., 2000, Applicability of Zinc complex of L-carnosine for medical use, Biochemistry, 65 (7), 817–823.

[20] Sankarganesh, M., Rajesh, J., Vinoth Kumar, G.G., Vadivel, M., Mitu, L., Senthil Kumar, R., and Dhaveethu Raja, J., 2018, Synthesis, spectral characterization, theoretical, antimicrobial, DNA interaction and in vitro anticancer studies of Cu(II) and Zn(II) complexes with pyrimidine-morpholine based Schiff base ligand, J. Saudi Chem. Soc., 22 (4), 416–426.

[21] Abd-Elzaher, M.M., Moustafa, S.A., Labib, A.A., Mousa, H.A., Ali, M.M., and Mahmoud, A.E., 2012, Synthesis, characterization and anticancer studies of ferrocenyl complexes containing thiazole moiety, Appl. Organomet. Chem., 26 (5), 230–236.

[22] Fetoh, A., Asla, K.A., El-Sherif, A.A., El-Didamony, H., and Abu El-Reash, G.M., 2019, Synthesis, structural characterization, thermogravimetric, molecular modelling and biological studies of Co(II) and Ni(II) Schiff bases complexes, J. Mol. Struct., 1178, 524–537.

[23] Qi, J., Zhang, Y., Gou, Y., Zhang, Z., Zhou, Z., Wu, X., Yang, F., and Liang, H., 2016, Developing an anti-cancer copper(II) pro-drug based on the His242 residue of the human serum albumin carrier IIA subdomain, Mol. Pharmaceutics, 13 (5), 1501–1507.

[24] Babin V.N., Belousov, Y.A., Borisov, V.I., Gumenyuk, V.V., Nekrasov, Y.S., Ostrovskaya, L.A., Sviridova, I.K., Sergeeva, N.S., Simenel, A.A., and Snegur, L.V., 2014, Ferrocenes as potential anticancer drugs, Russ. Chem. Bull., 63 (11), 2405–2422.

[25] Ritacco, I., Russo, N., and Sicilia, E., 2015, DFT investigation of the mechanism of action of organoiridium(III) complexes as anticancer agents, Inorg. Chem., 54 (22), 10801–10810.

[26] Adeyemi J.O., Saibu, G.M., Olasunkanmi, L.O., Fadaka, A.O., Meyer, M., Sibuyi, N.R.S., Onwudiwe, D.C., and Oyedeji, A.O., 2021, Synthesis, computational and biological studies of alkyltin(IV) N-methyl-N-hydroxyethyl dithiocarbamate complexes, Heliyon, 7 (8), e7693.

[27] Hogarth, G., 2012, Metal-dithiocarbamate complexes: Chemistry and biological activity, Mini-Rev. Med. Chem., 12 (12), 1202–1215.

[28] Awang, N., Nordin, N.A., Rashid, N., and Kamaludin, N.F., 2015, Synthesis and characterisation of phenanthroline adducts of Pb(II) complexes of BisN-alkyl-N-ethyldithiocarbamates, Orient. J. Chem., 31 (1), 333–339.

[29] Schreck R., Meier, B., Männel, D.N., Dröge, W., and Baeuerle, P.A., 1992, Dithiocarbamate as potent inhibitors of nuclear factor kappa B activation in intact cells, J. Exp. Med., 5, 1181–1194.

[30] Malaguarnera, L., Pilastro, M.R., DiMarco, R., Scifo, C., Renis, M., Mazzarino, M.C., and Messina, A., 2003, Cell death in human acute myelogenous leukemic cells induced by pyrrolidinedithiocarbamate, Apoptosis, 8 (5), 539–545.

[31] Buac, D., Schmitt, S., Ventro, G., Kona, F.R., and Ping Dou, Q., 2012, Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells, Mini-Rev. Med. Chem., 12 (12), 1193–1201.

[32] Boschi, A., Uccelli, L., and Martini, P., 2019, A picture of modern Tc-99m radiopharmaceuticals: Production, chemistry, and applications in molecular imaging, Appl. Sci., 9 (12), 2526.

[33] Boschi, A., Martini, P., and Uccelli, L., 2017, 188Re(V) nitrido radiopharmaceuticals for radionuclide therapy, Pharmaceuticals, 10 (1), 12.

[34] Khan, S.Z., Amir, M.K., Abbasi, R., Tahir, M.N., and ur-Rehman, Z., 2016, New 3D and 2D supramolecular heteroleptic palladium(II) dithiocarbamates as potent anticancer agents, J. Coord. Chem., 69 (20), 2999–3009.

[35] Altaf, I.A., Monim-ul-Mehboob M., Kawde, A.N., Corona, G., Larcher, R., Ogasawara, M., Casagrande, N., Celegato, M., Borghese, C., Siddik, Z.H., Aldinucci, D., and Isab, A.A., 2017, New bipyridine gold(III) dithiocarbamate-containing complexes exerted a potent anticancer activity against cisplatin-resistant cancer cells independent of p53 status, Oncotarget, 8, 490–505.

[36] Oh, D.H., Bang, J.S., Choi, H.M., Yang, H.I., Yoo, M.C., and Kim, K.S., 2010, Fetal bovine serum requirement for pyrrolidine dithiocarbamate-induced apoptotic cell death of MCF-7 breast tumor cell, Eur. J. Pharmacol., 649 (1-3), 135–139.

[37] Mollin, S., Riedel, R., Harms, K., and Meggers, E., 2015, Octahedral rhodium(III) complexes as kinase inhibitors: Control of the relative stereochemistry with acyclic tri-dentate ligands, J. Inorg. Biochem., 148, 11–21.

[38] Nabipour, H., Ghammamy, S., Ashuri, S., and Aghbolagh, Z.S., 2010, Synthesis of a new dithiocarbamate compound and study of its biological properties, Org. Chem. J., 2, 75–80.

[39] Fu, D.J., Zhang, L., Song, J., Mao, R.W., Zhao, R.H., Liu, Y.C., Hou, Y.H., Li, J.H., Yang, J.J., Jin, C.Y., Li, P., Zi, X.L., Liu, H.M., Zhang, S.Y., and Zhang, Y.B., 2017, Design and synthesis of formononetin-dithiocarbamate hybrids that inhibit growth and migration of PC-3 cells via MAPK/Wnt signaling patways, Eur. J. Med. Chem., 127, 87–99.

[40] Ajibade, P.A., and Ejelonu, B.C., 2013, Group 12 dithiocarbamate complexes: synthesis, spectral studies and their use as precursors for metal sulfides nanoparticles and nanocomposites, Spectrochim. Acta, Part A, 113, 408–414.

[41] Rogachev, I., Gusis, V., Gusis, A., Cortina, J.L., Gressel, J., and Warshawsky, A., 1999, Spectrophotometric determination of copper complexation properties of new amphiphilic dithiocarbamates, React. Funct. Polym., 42 (3), 243–254.

[42] Ferreira, I.P., de Lima, G.M., Paniago, E.B., Pinheiro, C.B., Wardell, J.L., and Wardell, S.M.S.V., 2015, Study of metal dithiocarbamate complexes, Part V. Metal complexes of [S2CN(CH2CH(OMe)2]: A standard dimeric zinc dithiocarbamate structural motive, a rare cadmium dithiocarbamate coordination polymer, and a hydrated sodium dithiocarbarmate complex, with a[Na2O2] core and chain, Inorg. Chim. Acta, 441, 137–145.

[43] Flamme, M., Cressey, P.B., Lu, C., Bruno, P.M., Eskandari, A., Hermann, M.T., Hogarth, G., and Suntharalingam, K., 2017, Induction of necroptosis in cancer stem cells using a nickel(II)-dithiocarbamate phenanthroline complex, Chem. - Eur. J., 23 (40), 9674–9682.

[44] Irfandi, R., Prihantono, P., Raya, I., Kartina, D., and Riswandi, R., 2019, Synthesis, characterization and anticancer studies of Fe(II)cysteinedithiocarbamate complex, ICOST 2019, 2-3 May 2019, Makassar, Indonesia.

[45] Kartina, D., Wahab, A.W., Ahmad, A., Irfandi, R., Prihantono, P., and Raya, I., 2020, In-vitro evaluation of the anticancer activity of Cu(II)amina(cysteine)dithiocarbamate, Syst. Rev. Pharm., 11 (9), 43–51.

[46] Riswandi, J., and Raya, I., 2019, Synthesis, characterization and anticancer studies of Cu(II) isoleucine dithiocarbamate complexes, J. Chem. Pharm. Res., 11 (5), 63–69.

[47] Andrew, F.P., and Ajibade, P.A., 2018, Synthesis, characterization and anticancer studies of bis-(N-methyl-1-phenyldithiocarbamato) Cu(II), Zn(II), and Pt(II) complexes: single crystal X-ray structure of the copper complex, J. Coord. Chem., 71 (16-18), 2776–2786.

[48] Ajibade, P.A., Andrew, F.P., Botha, N.L., and Solomane, N., 2020, Synthesis, crystal structures and anticancer studies of morpholinyldithiocarbamato Cu(II) and Zn(II) complexes, Molecules, 25 (16), 3584.

[49] Ajidabe, A., Andrew, F.P., Fatokun, A.A., and Oluwalana, A.E., 2021, Synthesis, characterization and in vitro screening for anticancer potential of Mn(II), Co(II), Zn(II), and Pt(II) methoxyphenyl dithiocarbamato complexes, J. Mol. Struct., 1230, 129894.

[50] Kartina, D., Wahab, A.W., Ahmad, A., Irfandi, R., and Raya, I., 2019, In vitro antibacterial and anticancer activity of Zn(II) Valinedithiocarbamate complexes, J. Phys.: Conf. Ser., 1341, 032042.

[51] Prihantono, P., Irfandi, R., and Raya, I., 2021, The comparison of Zn(II) arginine dithiocarbamate cytotoxicity in T47D breast cancer and fibroblast cells, Breast Dis., 40 (S1), S55–S61.

[52] Andrew, F.P., Ajibade, P.A., 2018, Synthesis, characterization and anticancer studies of bis(1-phenylpiperazinedithiocarbamato) Cu(II), Zn(II) and Pt(II) complexes: Crystal structure of 1-phenylpiperazine dithiocarbamato-S,S’ zinc(II) and Pt(II), J. Mol. Struct., 1170, 24–29.

[53] Ajibade, P.A., Fatokun, A.A., and Andrew, F.P., 2020, Synthesis, characterization and anti-cancer studies of Mn(II), Cu(II), Zn(II) and Pt(II) dithiocarbamate complexes - crystal structures of the Cu(II) and Pt(II) complexes, Inorg. Chim. Acta, 504, 119431.

[54] Irfandi, R., Santi, S., Raya, I., Ahmad, A., Fudholi, A., Sari, D.R.T., and Prihantono, P., 2022, Study of new Zn(II)Prolinedithiocarbamate as a potential agent for breast cancer: Characterization and molecular docking, J. Mol. Struct., 1252, 132101.

[55] Prihantono, P., Irfandi, R., Raya, I., and Warsinggih, W., 2020, Potential anticancer activity of Mn(II) complexes containing arginine dithiocarbamate ligand on MCF-7 breast cancer cell lines, Ann. Med. Surg., 60, 396–402.

[56] Wang, Y., Nguyen, D.T., Yang, G., Anesi, J., Chai, Z., Charchar, F., and Collwdge, J., 2020, An improved 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium proliferation assay to overcome the interference of hydralazine, Assay Drug Dev. Technol., 18 (8), 379–384.

[57] Haryoto H., 2019, Cytotoxic activities of ethanol extract, nonpolar semipolar, and polar fractions of Dioscorea esculenta L. on MCF-7 cancer cell, J. Nutraceuticals Herb. Med., 2 (1), 12–19.

[58] Baharum, Z., Md Akim, A., Taufiq-Yap, Y.H., Abdul Hamid, R., and Kasran, R., 2014, In vitro antioxidant and antiproliferative activities of methanolic plant part extracts of Theobroma cacao, Molecules, 19 (11), 18317–18331.

[59] Abu-Surrah, A.A., and Kettunen, M., 2006, Platinum group antitumor chemistry: Design and development of new anticancer drugs complementary to cisplatin, Curr. Med. Chem., 13, (11), 1337–1357.

[60] Haribabu, J., Jeyalakshmi, K., Arun, Y., Bhuvanesh, N.S.P., Perumal, P.T., and Karvembu, R., 2017, Synthesis of Ni(II) complexes bearing indole-based thiosemicarbazone ligands for interaction with biomolecules and some biological applications, J Biol. Inorg. Chem., 22 (4), 461–480.

[61] Gao, E., Qi, Z., Qu, Y., Ding, Y., Zhan, Y., Sun, N., Zhang, S., Qiu, X., and Zhu, M., 2017, Two novel dinuclear ellipsoid Ni(II) and Co(II) complexes bridged by 4,5-bis(pyrazol-1-yl)phthalic acid: Synthesis, structural characterization and biological evaluation, Eur. J. Med. Chem., 136, 235–245.

[62] Zhao, C., Chen, X., Zang, D., Lan, X., Liao, S., Yang, C., Zhang, P., Wu, J., Li, X., Liu, N., Liao, Y., Huang, H., Shi, X, Jiang, L., Liu, X., He, Z., Dou, Q.P., Wang, X., Liu, J., 2016, A novel Ni complex works as a proteasomal deubiquitinase inhibitor for cancer therapy, Oncogene, 35 (45), 5916–5927.

[63] Afrasiabi, Z., Stovall, P., Finley, K., Choudhury, A., Barnes, C., Ahmad, A., Sarkar, F., Vyas, A., and Padhye, S., 2013, Targeting triple negative breast cancer cells by N3-substituted 9,10-phenanthrenequinone thiosemicarbazones and their metal complexes, Spectrochim. Acta, Part A, 114, 114–119.

[64] Huang, R., Wallqvist, A., and Covell, D.G., 2005, Anticancer metal compounds in NCI’s tumor-screening database: Putative mode of action, Biochem. Pharmacol., 69 (7), 1009–1039.

[65] Nejdl, L., Ruttkay-Nedecky, B., Kudr, J., Krizkova, S., Smerkova, K., Dostalova, S., Vaculovicoca, M., Kopel, P., Zehnalek, J., Trnkova, L., Babula, P., Adam, V., and Kizek., 2014, DNA interaction with zinc(II) ions, Int. J. Biol. Macromol., 64, 281–287.

[66] Georgiades, S.N., Abd Karim, N.H., Suntharalingam, K., and Vilar, R., 2010, Interaction of metal complexes with G-quadruplex DNA, Angew. Chem., Int. Ed., 49, (24), 4020–4034.

[67] Ang, D.L., Harper, B.W.J., Cubo, L., Mendoza, O., Vilar, R., Aldrich-Wright, J., 2016, Quadruplex DNA-stabilising dinuclear platinum(II) terpyridine complexes with flexible linkers, Chem. - Eur. J., 22 (7), 2317–2325.

[68] Pages, B.J., Ang, D.L., Wright, E.P., and Aldrich-Wright, J., 2015, Metal complex interactions with DNA, Dalton Trans., 44 (8), 3505–3526.

[69] Kellett, A., Molphy Z., Slator, C., McKee, V., and Farrel, N.P., 2019, Molecular methods for assessment of non-covalent metallodrug–DNA interactions, Chem. Soc. Rev., 4 8(4), 971–988.

[70] Alberti, E., Zampakou, M., and Donghi., 2016, Covalent and non-covalent binding of metal complexes to RNA, J. Inorg. Biochem., 163, 278–291.

[71] Mudasir., M., Wijaya, K., Wahyuni, E.T., Inoue, H., and Yoshioka, N., 2007, Base-specific and enantioselective studies for the DNA binding of iron(II) mixed-ligand complexes containing 1,10-phenanthroline and dipyrido[3,2-a:2′,3′-c]phenazine, Spectrochim. Acta, Part A, 66 (1), 163–170.

[72] Nanjunda, R., and Wilson, W.D., 2012, Binding to the DNA minor groove by heterocyclic dications: From AT-specific monomers to GC recognition with dimers, Curr. Protoc. Nucleic Acid Chem., 5 (1), 8.8.1–8.8.20.

[73] Hadjiliadis, N., and Sletten, E., 2009, Metal Complex-DNA Interactions, Blackwell Publishing Ltd., Hoboken, US.

[74] Ishida, S., Lee, J., Thiele, D.J., and Herskowitz, I., 2002, Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals, Proc. Natl. Acad. Sci. U. S. A., 99 (22), 14298–14302.

[75] Blommaert, F.A., van Dijk-Knijnenburg, H.C.M., Dijt, F.J., den Engelse, L., Baan, R.A., Berends, F., Fichtinger-Schepman, A.M.J., 1995, Formation of DNA adducts by the anticancer drug carboplatin: Different nucleotide sequence preferences in vitro and in cells, Biochemistry, 34 (26), 8474–8480.



DOI: https://doi.org/10.22146/ijc.73738

Article Metrics

Abstract views : 340 | views : 167


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.