Electrochemical Sensor of Levofloxacin on Boron-Doped Diamond Electrode Decorated by Nickel Nanoparticles

https://doi.org/10.22146/ijc.73515

Prastika Krisma Jiwanti(1*), Irfansyah Rais Sitorus(2), Grandprix Thomryes Marth Kadja(3), Siti Wafiroh(4), Yasuaki Einaga(5)

(1) Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
(2) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
(3) Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia; Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia; Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(4) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
(5) Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
(*) Corresponding Author

Abstract


Levofloxacin (LEV) was known as one of the fluoroquinolone antibiotics that widely used as an antibacterial agent. Monitoring of LEV is important due to its negative side effect on humans. The determination of LEV was studied for the first time on nickel modified on a boron-doped diamond (NiBDD) electrode using the square wave voltammetry (SWV) method to improve the catalytic and sensitivity of the sensor. The response was linear in the range of 30–100 mM LEV. LEV sensor on NiBDD was found to be selective in the presence of urea, glucose, and ascorbic acid interferences. Good reproducibility with % a relative standard deviation of 1.45% (n = 10) was achieved. Therefore, the NiBDD electrode could be potentially applied for the real detection method of LEV.


Keywords


levofloxacin; electrochemical sensor; nickel; boron-doped diamond; environmental pollution

Full Text:

Full Text PDF


References

[1] Nambasa, V., Ndagije, H.B., Serwanga, A., Manirakiza, L., Atuhaire, J., Nakitto, D., Kiguba, R., and Figueras, A., 2020, Prescription of levofloxacin and moxifloxacin in select hospitals in Uganda: a pilot study to assess guideline concordance, Antibiotics, 9 (8), 439.

[2] Jin, Y., Xu, G., Li, X., Ma, J., Yang, L., Li, Y., Zhang, H., Zhang, Z., Yao, D., and Li, D., 2021, Fast cathodic reduction electrodeposition of a binder-free cobalt-doped Ni-MOF film for directly sensing of levofloxacin, J. Alloys Compd., 851, 156823.

[3] Borowiec, J., Yan, K., Tin, C.C., and Zhang, J., 2015, Synthesis of PDDA functionalized reduced graphene oxide decorated with gold nanoparticles and its electrochemical response toward levofloxacin, J. Electrochem. Soc., 162 (3), H164–H169.

[4] Izadi, E., Afshan, G., Patel, R.P., Rao, V.M., Liew, K.B., Meor Mohd Affandi, M.M.R., Kifli, N., Suleiman, A., Lee, K.S., Sarker, M.M.R., Zaidi, S.T., and Ming, L.C., 2019, Levofloxacin: Insights into antibiotic resistance and product quality, Front. Pharmacol., 10, 881.

[5] Wu, H.H., Liu, H.Y., Lin, Y.C., Hsueh, P.R., and Lee, Y.J., 2016, Correlation between levofloxacin consumption and the incidence of nosocomial infections due to fluoroquinolone-resistant Escherichia coli, J. Microbiol. Immunol. Infect., 49 (3), 424–429.

[6] Naveed, S., Sultana, N., Saeed Arayne, M., and Dilshad, H.A., 2014, A new HPLC method for the assay of levofloxacin and its application in drug-metal interaction studies, J. Sci. Innovative Res., 3 (31), 91–96.

[7] Gülfen, M., Canbaz, Y., and Özdemir, A., 2020, Simultaneous determination of amoxicillin, lansoprazole, and levofloxacin in pharmaceuticals by HPLC with UV–Vis detector, J. Anal. Test., 4 (1), 45–53.

[8] Desai, V.N., Afieroho, O.E., Dagunduro, B.O., Okonkwo, T.J., and Ndu, C.C., 2011, A simple UV spectrophotometric method for the determination of levofloxacin in dosage formulations, Trop. J. Pharm. Res., 10 (1), 75–79.

[9] Mohamed, S., Mvungi, H.C., Sariko, M., Rao, P., Mbelele, P., Jongedijk, E.M., van Winkel, C.A.J., Touw, D.J., Stroup, S., Alffenaar, J.W.C., Mpagama, S., and Heysell, S.K., 2021, Levofloxacin pharmacokinetics in saliva as measured by a mobile microvolume UV spectrophotometer among people treated for rifampicin-resistant TB in Tanzania, J. Antimicrob. Chemother., 76 (6), 1547–1552.

[10] Shao, X., Li, Y., Liu, Y., and Song, Z., 2011, Rapid determination of levofloxacin in pharmaceuticals and biological fluids using a new chemiluminescence system, J. Anal. Chem., 66 (1), 102–107.

[11] de Farias, D.M., de Faria, L.V., Lisboa, T.P., Matos, M.A.C., Muñoz, R.A.A., and Matos, R.C., 2020, Determination of levofloxacin in pharmaceutical formulations and urine at reduced graphene oxide and carbon nanotube-modified electrodes, J. Solid State Electrochem., 24 (5), 1165–1173.

[12] Liu, C., Xie, D., Liu, P., Xie, S., Wang, S., Cheng, F., Zhang, M., and Wang, L., 2019, Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film, Microchim. Acta, 186 (1), 21.

[13] Ganta, D., Chavez, J., and Lopez, A., 2020, Disposable chronoamperometric sensor coated with silver nanowires for detecting levofloxacin, Anal. Lett., 53 (12), 1992–2001.

[14] Wong, A., Santos, A.M., and Fatibello-Filho, O., 2018, Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film, Sens. Actuators, B, 255, 2264–2273.

[15] Agustiany, T., Khalil, M., Einaga, Y., Jiwanti, P.K., and Ivandini, T.A., 2020, Stable iridium-modified boron-doped diamond electrode for the application in electrochemical detection of arsenic (III), Mater. Chem. Phys., 244, 122723.

[16] Ivandini, T.A., Ariani, J., Jiwanti, P.K., Gunlazuardi, J., Saepudin, E., and Einaga, Y., 2017 Electrochemical detection of neuraminidase based on zanamivir inhibition reaction at platinum and platinum-modified boron-doped diamond electrodes, Makara J. Sci., 21 (1), 34–42.

[17] Diksy, Y., Rahmawati, I., Jiwanti, P.K., and Ivandini, T.A., 2020, Nano-Cu modified Cu and Nano-Cu modified graphite electrodes for chemical oxygen demand sensors, Anal. Sci., 36 (11), 1323–1330.

[18] Deng, Z., Long, H., Wei, Q., Yu, Z., Zhou, B., Wang, Y., Zhang, L., Li, S., Ma, L., Xie, Y., and Min, J., 2017, High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode, Sens. Actuators, B, 242, 825–834.

[19] Jiwanti, P.K., and Einaga, Y., 2020, Further study of CO2 electrochemical reduction on palladium modified BDD electrode: Influence of electrolyte, Chem. - Asian J., 15 (6), 910–914.

[20] Jiwanti, P.K., Aritonang, R.P., Abdullah, I., Einaga, Y., and Ivandini, T.A., 2019, Copper-nickel-modified boron-doped diamond electrode for CO2 electrochemical reduction application: A preliminary study, Makara J. Sci., 23 (4), 204–209.

[21] Yamamoto, T., Riehl, B., Naba, K., Nakahara, K., Wiebe, A., Saitoh, T., Waldvogel, S.R., and Einaga, Y., 2018 A solvent-directed stereoselective and electrocatalytic synthesis of diisoeugenol, Chem. Commun., 54 (22), 2771–2773.

[22] Ivandini, T.A., and Einaga, Y., 2017, Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications, Chem. Commun., 53 (8), 1338–1347.

[23] Putri, Y.M.T.A., Jiwanti, P.K., Irkham, I., Gunlazuardi, J., Einaga, Y., and Ivandini, T.A., 2021, Nickel cobalt modified boron-doped diamond as an electrode for a urea/H2O2 fuel cell, Bull. Chem. Soc. Jpn., 94 (12), 2922–2928.

[24] Watanabe, T., Honda, Y., Kanda, K., and Einaga, Y., 2014, Tailored design of boron-doped diamond electrodes for various electrochemical applications with boron-doping level and sp2-bonded carbon impurities, Phys. Status Solidi A, 211 (12), 2709–2717.

[25] Kasahara, S., Natsui, K., Watanabe, T., Yokota, Y., Kim, Y., Iizuka, S., Tateyama, Y., and Einaga, Y., 2017, Surface hydrogenation of boron-doped diamond electrodes by cathodic reduction, Anal. Chem., 89 (21), 11341–11347.

[26] Hoffmann, R., Obloh, H., Tokuda, N., Yang, N., and Nebel, C.E., 2012, Fractional surface termination of diamond by electrochemical oxidation, Langmuir, 28 (1), 47–50.

[27] Chen, A., and Shah, B., 2013, Electrochemical sensing and biosensing based on square wave voltammetry, Anal. Methods, 5 (9), 2158–2173.

[28] Rkik, M., Brahim, M.B., and Samet, Y., 2017, Electrochemical determination of levofloxacin antibiotic in biological samples using boron doped diamond electrode, J. Electroanal. Chem., 794, 175–181.

[29] Radi, A., and El-Sherif, Z., 2002, Determination of levofloxacin in human urine by adsorptive square-wave anodic stripping voltammetry on a glassy carbon electrode, Talanta, 58 (2), 319–324.

[30] Taverniers, I., De Loose, M., and Van Bockstaele, E., 2004, Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance, TrAC, Trends Anal. Chem., 23 (8), 535–552.



DOI: https://doi.org/10.22146/ijc.73515

Article Metrics

Abstract views : 1326 | views : 611


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.