Profiling of Phytochemical Compounds of East Java Red Rice Bran Has the High-Value Biological Activities as Antioxidant and Antidiabetic

Yoravika Dwiwibangga(1), Anna Safitri(2), Fatchiyah Fatchiyah(3*)

(1) Research Center of Smart Molecule of Natural Genetics Resource, Brawijaya University, Malang 65145, East Java, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
(2) Research Center of Smart Molecule of Natural Genetics Resource, Brawijaya University, Malang 65145, East Java, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
(3) Research Center of Smart Molecule of Natural Genetics Resource, Brawijaya University, Malang 65145, East Java, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
(*) Corresponding Author


The phytochemicals contained in rice bran, mainly flavonoid compounds, are predicted to have biological activity. Flavonoids are able to counteract the free radicals and degrade insulin resistance. The East Java Red Rice Bran samples, e.g., Mentik Wangi, Aek Sibundong, and Blambangan, were used in the study. Their phytochemical profiles, functional groups, antioxidant, and antidiabetic activities were investigated. The phytochemical analysis showed that the bran of Mentik Wangi, Aek Sibundong, and Blambangan contained flavonoid, triterpenoid, phenolic, tannin, and glycoside. Based on the FTIR, some functional groups were identified in three rice bran varieties, namely, the O-H stretching, C-H aliphatic, C-H sp3 stretching, C=C stretching aromatics, C=C stretching alkenes, CH2 and CH3 bonds rocking, C-H aromatic, CH-OH stretching alcohols, and C-O stretching ether or ester suggesting that rice brans are rich in phytochemical compounds. Through LC-HRMS analysis in positive ion mode, several types of flavonoids were confirmed. Pinocembrin was found in the three brands. The highest antioxidant and antidiabetic activity were observed in Blambangan rice bran with an IC50 value of 1.09 and 75.76 µg/mL, respectively. To conclude, the red rice bran phytochemical compounds exhibit potential biological activities as antioxidant and antidiabetic agents.


antidiabetic; antioxidant; phytochemical; rice bran

Full Text:

Full Text PDF


[1] Rathna Priya, T.S., Eliazer Nelson, A.R.L., Ravichandran, K., and Antony, U., 2019, Nutritional and functional properties of coloured rice varieties of South India: A review, J. Ethn. Foods, 6 (1), 11.

[2] Furuta, T., Komeda, N., Asano, K., Uehara, K., Gamuyao, R., Angeles-Shim, R.B., Nagai, K., Doi, K., Wang, D.R., Yasui, H., Yoshimura, A., Wu, J., McCouch, S.R., and Ashikari, M., 2015, Convergent loss of awn in two cultivated rice species Oryza sativa and Oryza glaberrima is caused by mutations in different loci, G3: Genes, Genomes, Genet., 5 (11), 2267–2274.

[3] Samyor, D., Das, A.B., and Deka, S.C., 2017, Pigmented rice a potential source of bioactive compounds: A review, Int. J. Food Sci. Technol., 52 (5), 1073–1081.

[4] Sari, D.R.T., Safitri, A., Cairns, J.R.K., and Fatchiyah, F., 2020, Anti-apoptotic activity of anthocyanins has potential to inhibit caspase-3 signaling, J. Trop. Life Sci., 10 (1), 15–25.

[5] Agustin, A.T., Safitri, A., and Fatchiyah, F., 2020, An in silico approach reveals the potential function of cyanidin-3-O-glucoside of red rice in inhibiting the advanced glycation end products (AGEs)-receptor (RAGE) signaling pathway, Acta Inform. Med., 28 (3), 170–179.

[6] Fitriana, W.D., Ersam, T., Shimizu, K., and Fatmawati, S., 2018, Antioxidant activity of Moringa oleifera extracts, Indones. J. Chem., 16 (3), 297–301.

[7] Meera, K., Smita, M., Haripriya, S., and Sen, S., 2019, Varietal influence on antioxidant properties and glycemic index of pigmented and non-pigmented rice, J. Cereal Sci., 87, 202–208.

[8] Fatchiyah, F., Sari, D.R.T., Safitri, A., and Cairns, J.R., 2020, Phytochemical compound and nutritional value in black rice from Java Island, Indonesia, Syst. Rev. Pharm., 11 (7), 414–421.

[9] Ghasemzadeh, A., Karbalaii, M.T., Jaafar, H.Z.E., and Rahmat, A., 2018, Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran, Chem. Cent. J., 12 (1), 17.

[10] Boue, S.M., Daigle, K.W., Chen, M.H., Cao, H., and Heiman, M.L., 2016, Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts, J. Agric. Food Chem., 64 (26), 5345–5353.

[11] Kubota, M., Watanabe, R., Hosojima, M., Saito, A., Sasou, A., Masumura, T., Harada, Y., Hashimoto, H., Fujimura, S., and Kadowaki, M., 2020, Rice bran protein ameliorates diabetes, reduces fatty liver, and has renoprotective effects in Zucker diabetic fatty rats, J. Funct. Foods, 70, 103981.

[12] Ghasemzadeh, A., Baghdadi, A., Jaafar, H.Z.E., Swamy, M.K., and Megat Wahab, P.E., 2018, Optimization of flavonoid extraction from red and brown rice bran and evaluation of the antioxidant properties, Molecules, 23 (8), 1863.

[13] Moko, E.M., and Rahardiyan, D., 2020, Structure of stigmasterols in bran of red rice from Minahasa Regency, North Sulawesi, Indonesia, Fullerene J. Chem., 5 (1), 16–22.

[14] Spaggiari, M., Dall’Asta, C., Galaverna, G., and del Castillo Bilbao, M.D., 2021, Rice bran by-product: From valorization strategies to nutritional perspectives, Foods, 10 (1), 85.

[15] Friedman, M., 2013, Rice brans, rice bran oils, and rice hulls: Composition, food, and industrial uses, and bioactivities in humans, animals, and cells, J. Agric. Food Chem., 61 (45), 10626−10641.

[16] Shao, Y., and Bao, J., 2015, Polyphenols in whole rice: Genetic diversity and health benefits, Food Chem., 180, 86–97.

[17] Gul, K., Yousuf, B., Singh, A.K., Singh, P., and Wani, A.A., 2015, Rice bran: Nutritional values and its emerging potential for development of functional food—A review, Bioact. Carbohydr. Dietary Fibre, 6 (1), 24–30.

[18] Nam, S.H., Choi, S.P., Kang, M.Y., Koh, H.J., Kozukue, N., and Friedman, M., 2006, Antioxidative activities of bran extracts from twenty one pigmented rice cultivars, Food Chem., 94 (4), 613–620.

[19] Min, B., McClung, A.M., and Chen, M.H., 2011, Phytochemicals and antioxidant capacities in rice brans of different color, J. Food Sci., 76 (1), C117−C126.

[20] Anand David, A.V., Arulmoli, R., and Parasuraman, S., 2016, Overviews of biological importance of quercetin: A bioactive flavonoid, Pharmacogn. Rev., 10 (20), 84–89.

[21] Ho, E., Karimi Galougahi, K., Liu, C.C., Bhindi, R., and Figtree, G.A., 2013, Biological markers of oxidative stress: Applications to cardiovascular research and practice, Redox Biol., 1 (1), 483–491.

[22] Renganathan, S., Srivastava, A., and Pillai, R.G., 2020, Dhanwantaram kashayam, an Ayurvedic polyherbal formulation, reduces oxidative radicals and reverts lipids profile towards normal in diabetic rats, Biochem. Biophys. Rep., 22, 100755.

[23] Al-Naggar, R.A., Osman, M.T., Mohamed, I.N., Bin Nor Aripin, K.N., and Abdulghani, M.A.M., 2017, Effect of Nigella sativa supplementation on human lipids: Systematic review, J. Appl. Pharm. Sci., 7 (4), 213–219.

[24] Abotaleb, M., Samuel, S.M., Varghese, E., Varghese, S., Kubatka, P., Liskova, A., and Büsselberg, D., 2018, Flavonoids in cancer and apoptosis, Cancers, 11 (1), 28.

[25] AL-Ishaq, R.K., Abotaleb, M., Kubatka, P., Kajo, K., and Büsselberg. D., 2019, Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels, Biomolecules, 9 (9), 430.

[26] Takahama, U., and Hirota, S., 2018, Interactions of flavonoids with α-amylase and starch slowing down its digestion, Food Funct., 9 (2), 677–687.

[27] Lo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M., and Chou, C.J., 2008, Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase, J. Med. Chem., 51 (12), 3555–3561.

[28] Safitri, A., Roosdiana, A., Hitdatania, E., and Damayanti, S.A., 2021, In vitro alpha-amylase inhibitory activity of microencapsulated Cosmos caudatus Kunth. extracts, Indones. J. Chem., 22 (1), 212–222.

[29] Lisi, A.K.F., Runtuwene, M.R.J., and Wewengkang, D.S., 2017, Uji fitokimia dan aktivitas antioksidan bunga soyogik (Saurauia bracteosa DC.), Pharmacon, 6 (1), 53–61.

[30] Yuda, P.E.S.K., Cahyaningsih, E., and Winariyanthi, N.P.Y., 2017, Skrining fitokimia dan analisis kromatografi lapis tipis ekstrak tanaman patikan kebo (Euphorbia hirta L.), JINTO, 3 (2), 61–70.

[31] Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., Elsohly, M.A., and Khan, I.A., 2014, Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study, Evidence-Based Complementary Altern. Med., 2014, 253875.

[32] Wanyo, P., Schoenlechner, R., Meeso, N., and Siriamornpun, S., 2014, Antioxidant activities and sensory properties of rice bran with marigold tea, Food Appl. Biosci. J., 2 (1), 1–14.

[33] Astuti, M.D., Kuntorini, E.M., and Wisuda, F.E.P., 2014, Isolasi dan identifikasi terpenoid dari fraksi n-butanol herba lampasau (Diplazium esculentum Swartz), J. Kim. Valensi, 4 (1), 20–24.

[34] Sari, P.P., Rita, W.S., and Puspawati, N.M., 2015, Identifikasi dan uji aktivitas senyawa tanin dari ekstrak daun trembesi (Samanea saman (Jacq.) Merr) sebagai antibakteri Escherichia coli (E. coli), J. Kim., 9 (1), 27–34.

[35] Gafur, M.A., 2013, Isolasi dan Identifikasi Senyawa Flavonoid dari Daun Jamblang (Syzygium cumini), Undergraduate Thesis, Universitas Negeri Gorontalo, Gorontalo, Indonesia.

[36] Pollastri, S., and Tattini, M., 2011, Flavonols: Old compounds for old roles, Ann. Bot., 108 (7), 1225–1233.

[37] Chanda, S., and Dave, R., 2009, In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview, Afr. J. Microbiol. Res., 3 (13), 981–996.

[38] Murray, R.K., Granner, D.K., and Rodwell, V.W., 2009, Biokimia Harper, 27th Ed., Medical Book Publisher EGC, Jakarta, Indonesia.

[39] Wang, T., Li, Q., and Bi, K.S., 2018, Bioactive flavonoids in medicinal plants: structure, activity and biological fate, Asian J. Pharm. Sci., 13 (1), 12–23.

[40] Chiang, Y.C., Chen, C.L., Jeng, T.L., and Sung, J.M., 2014, In vitro inhibitory effects of cranberry bean (Phaseolus vulgaris L.) extracts on aldose reductase, α-glucosidase and α-amylase, Int. J. Food Sci. Technol., 49 (6), 1470–1479.

[41] Khalil-Moghaddam, S., Ebrahim-Habibi, A., Pasalar, P., Yaghmaei, P., and Hayati-Roodbari, N., 2012, Reflection on design and testing of pancreatic alpha-amylase inhibitors: An in silico comparison between rat and rabbit enzyme models, Daru, J. Pharm. Sci., 20 (1), 77.

[42] Yin, Z., Zhang, W., Feng, F., Zhang, Y., and Kang, W., 2014, α-Glucosidase inhibitors isolated from medicinal plants, Food Sci. Hum. Wellness, 3 (3-4), 136–174.

[43] Xu, H., 2010, Inhibition kinetics of flavonoids on yeast α-glucosidase merged with docking simulations, Protein Pept. Lett., 17 (10), 1270–1279.

[44] Limwachiranon, J., Huang, H., Shi, Z., Li, L., and Luo, Z., 2018, Lotus flavonoids and phenolic acids: health promotion and safe consumption dosages, Compr. Rev. Food Sci. Food Saf., 17 (2), 458–471.

[45] Rukmana, R.M., Soesilo, N.P., Rumiyati, R., and Pratiwi, R., 2016, The effect of ethanolic extract of black and white rice bran (Oryza sativa L.) on cancer cells, Indones. J. Biotechnol., 21 (1), 63–69.

[46] San Miguel-Chavez, R., 2017, “Phenolic Antioxidant Capacity: A Review of the State of the Art” in Phenolic Compounds - Biological Activity, Eds. Soto-Hernandez, M., Palma Tenango, M., and Garcia-Mateos, R., IntechOpen Limited, London, 59–74.

[47] Sari, B. L., Susanti, N., and Sutanto, S., 2017, Skrining Fitokimia dan aktivitas antioksidan fraksi etanol alga merah Eucheuma spinosum, Pharm. Sci. Res., 2 (2), 59–68.

[48] Pękal, A., and Pyrzynska, K., 2014, Evaluation of aluminium complexation reaction for flavonoid content assay, Food Anal. Methods, 7 (9), 1776–1782.

[49] Sutjiatmo, A.B., Edriayani, N., Mulyasari, T.E., and Hermanto, F., 2020, Antioxidant and antiaging assays of Ageratum conyzoides L. ethanolic extract, Pharm. Sci. Res., 7 (3), 145–152.

[50] Sarian, M.N., Ahmed, Q.U., Mat So’ad, S.Z., Alhassan, A.M., Murugesu, S., Perumal, V., Syed Mohamad, S.N.A., Khatib, A., and Latip, J., 2017, Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study, BioMed Res. Int., 2017, 8386065.

[51] Semighini, E.P., Resende, J.A., de Andrade, P., Morais, P.A.B., Carvalho, I., Taft, C.A., and Silva, C.H.T.P., 2011, Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes, J. Biomol. Struct. Dyn., 28 (5), 787–796.

[52] Jadav, P., Bahekar, R., Shah, S.R., Patel, D., Joharapurkar, A., Kshirsagar, S., Jain, M., Shaikh, M., and Sairam, K.V.V.M., 2012, Long-acting peptidomimetics based DPP-IV inhibitors, Bioorg. Med. Chem. Lett., 22 (10), 3516–3521.

[53] Ferreira, I.C.F.R., Baptista, P., Vilas-Boas, M., and Barros, L., 2007, Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity, Food Chem., 100 (4), 1511–1516.

[54] Agustin, A.T., Safitri, A., and Fatchiyah, F., 2021, Java red rice (Oryza sativa L.) nutritional value and anthocyanin profiles and its potential role as antioxidant and anti-diabetic, Indones. J. Chem., 21 (4), 968–978.

[55] Cahyana, Y., and Adiyanti, T., 2021, Flavonoids as antidiabetic agents, Indones. J. Chem., 21 (2), 512–526.

[56] Pascual, J.M., and Ronen, G.M., 2015, Glucose transporter type I deficiency (G1D) at 25 (1990-2015): Presumption, facts, and the lives of persons with this rare diseases, Pediatr. Neurol., 53 (5), 379–393.

[57] Nsangou, M., Dhaouadi, Z., Jaidane, N., and Lakhdar, Z.B., 2008, DFT study of the structure of hydroxybenzoic acids and their reactions with OH and ·O2 radicals, J. Mol. Struct., 850 (1-3), 135–143.

[58] Wright, J.S., Johnson, E.R., and DiLabio, G.A., 2001, Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants, J. Am. Chem. Soc., 123 (6), 1173–1183.

[59] Şöhretoğlu, D., and Sari, S., 2019, Flavonoids as alpha-glucosidase inhibitors: Mechanistic approaches merged with enzyme kinetics and molecular modelling, Phytochem. Rev., 19 (5), 1081–1092.

[60] Gonçalves, A.C., Gaspar, D., Flores-Félix, J.D., Falcão, A., Alves, G., and Silva, L.R., 2022, Effects of functional phenolics dietary supplementation on athletes’ performance and recovery: A review, Int. J. Mol. Sci., 23 (9), 4652.


Article Metrics

Abstract views : 1201 | views : 612

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.