Polyvinyl Alcohol-Cellulose Nanocrystal Hydrogel Containing Anti-inflammatory Agent
Lia Amelia Tresna Wulan Asri(1*), Athiya Anindya(2), Yuni Eva Kartika(3), Dita Puspitasari(4), Untung Triadhi(5), Husaini Ardy(6)
(1) Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(2) Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(3) Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(4) Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(5) Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(6) Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Kujath, P., and Michelsen, A., 2008, Wounds-from physiology to wound dressing, Dtsch. Arztebl. Int., 105 (13), 239–248.
[2] de Oliveira Gonzalez, A.C., Costa, T.F., Andrade, Z.A., and Medrado, A.R.A.P., 2016, Wound healing - A literature review, An. Bras. Dermatol., 91 (5), 614–620.
[3] Guo, S., and DiPietro, L.A., 2010, Factors affecting wound healing, J. Dent. Res., 89 (3), 219–229.
[4] Zhang, J.M., and An, J., 2007, Cytokines, inflammation and pain, Int. Anesthesiol. Clin., 45 (2), 27–37.
[5] Negut, I., Grumezescu, V., and Grumezescu, A.M., 2018, Treatment strategies for infected wounds, Molecules, 23 (9), 2392.
[6] Edwards, R., and Harding, K.G., 2004, Bacteria and wound healing, Curr. Opin. Infect. Dis., 17 (2), 91–96.
[7] Heyer, K., Augustin, M., Protz, K., Herberger, K., Spehr, C., and Rustenbach, S.J., 2013, Effectiveness of advanced versus conventional wound dressings on healing of chronic wounds: Systematic review and meta-analysis, Dermatology, 226 (2), 172–184.
[8] Kumar, A., and Jaiswal, M., 2016, Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry, J. Appl. Polym. Sci., 133 (14), 43260.
[9] Dhivya, S., Padma, V.V., and Santhini, E., 2015, Wound dressings - A review, Biomedicine, 5 (4), 22.
[10] Koehler, J., Brandl, F.P., and Goepferich, A.M., 2018, Hydrogel wound dressings for bioactive treatment of acute and chronic wounds, Eur. Polym. J., 100, 1–11.
[11] Wardhani, R.A.K., Asri, L.A.T.W., Rachmawati, H., Khairurrijal, K., and Purwasasmita, B.N., 2020, Physical–chemical crosslinked electrospun Colocasia esculenta tuber protein–chitosan–poly(ethylene oxide) nanofibers with antibacterial activity and cytocompatibility, Int. J. Nanomed., 15, 6433–6449.
[12] Hanif, W., Hardiansyah, A., Randy, A., and Asri, L.A.T.W., 2021, Physically crosslinked PVA/graphene-based materials/aloe vera hydrogel with antibacterial activity, RSC Adv., 11 (46), 29029–29041.
[13] Wardhani, R.A.K., Asri, L.A.T.W., Rachmawati, H., Khairurrijal, K., and Purwasasmita, B.S., 2019, Stabilization of chitosan-polyethylene oxide electrospun nanofibrous containing Colocasia esculenta tuber protein, Mater. Res. Express, 6 (11), 1150f4.
[14] Zheng, C., Liu, C., Chen, H., Wang, N., Liu, X., Sun, G., and Qiao, W., 2019, Effective wound dressing based on Poly (vinyl alcohol)/Dextran-aldehyde composite hydrogel, Int. J. Biol. Macromol., 132, 1098–1105.
[15] Tavakoli, S., and Klar, A.S., 2020, Advanced hydrogels as wound dressings, Biomolecules, 10 (8), 1169.
[16] Wang, M., Xu, L., Hu, H., Zhai, M., Peng, J., Nho, Y., Li, J., and Wei, G., 2007, Radiation synthesis of PVP/CMC hydrogels as wound dressing, Nucl. Instrum. Methods Phys. Res., Sect. B, 265 (1), 385–389.
[17] Singh, D., Singh, A., and Singh, R., 2015, Polyvinyl pyrrolidone/carrageenan blend hydrogels with nanosilver prepared by gamma radiation for use as an antimicrobial wound dressing, J. Biomater. Sci., Polym. Ed., 26 (17), 1269–1285.
[18] Chen, S.L., Fu, R.H., Liao, S.F., Liu, S.P., Lin, S.Z., and Wang, Y.C., 2018, A PEG-based hydrogel for effective wound care management, Cell Transplant., 27 (2), 275–284.
[19] Liu, S., Jiang, T., Guo, R., Li, C., Lu, C., Yang, G., Nie, J., Wang, F., Yang, X., and Chen, Z., 2021, Injectable and degradable PEG hydrogel with antibacterial performance for promoting wound healing, ACS Appl. Bio Mater., 4 (3), 2769–2780.
[20] Xu, Q., Ji, Y., Sun, Q., Fu, Y., Xu, Y., and Jin, L., 2019, Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release, Nanomaterials, 9 (2), 253.
[21] Leung, A.C.W., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K.A., and Luong, J.H.T., 2011, Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure, Small, 7 (3), 302–305.
[22] Tanpichai, S., and Oksman, K., 2016, Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery, Composites, Part A, 88, 226–233.
[23] George, J., and Sabapathi, S.N., 2015, Cellulose nanocrystals: Synthesis, functional properties, and applications, Nanotechnol., Sci. Appl., 8, 45–54.
[24] Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., and Guan, G., 2018, Nanocellulose: Extraction and application, Carbon Resour. Convers., 1 (1), 32–43.
[25] Dong, S., Bortner, M.J., and Roman, M., 2016, Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: A central composite design study, Ind. Crops Prod., 93, 76–87.
[26] Lu, Z., Fan, L., Zheng, H., Lu, Q., Liao, Y., and Huang, B., 2013, Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted, Bioresour. Technol., 146, 82–88.
[27] Cui, S., Zhang, S., Ge, S., Xiong, L., and Sun, Q., 2016, Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis, Ind. Crops Prod., 83, 346–352.
[28] Isogai, A., and Zhou, Y., 2019, Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals, Curr. Opin. Solid State Mater. Sci., 23 (2), 101–106.
[29] Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S.S., Sharifi, F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., Derakhshandeh, H., Yue, K., Swieszkowski, W., Memic, A., Tamayol, A., and Khademhosseini, A., 2018, Drug delivery systems and materials for wound healing applications, Adv. Drug Delivery Rev., 127, 138–166.
[30] Asri, L.A.T.W., Rahmatika, A., Fahreza, M.Z., Insanu, M., and Purwasasmita, B.S., 2018, Preparation and release behavior of carboxylated cellulose nanocrystals-alginate nanocomposite loaded with rutin, Mater. Res. Express, 5 (9), 095303.
[31] Cheng, M., Qin, Z., Liu, Y., Qin, Y., Li, T., Chen, L., and Zhu, M., 2014, Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant, J. Mater. Chem. A, 2 (1), 251–258.
[32] Oun, A.A., and Rhim, J.W., 2018, Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method, Cellulose, 25 (4), 2143–2149.
[33] Santmartí, A., and Lee, K.Y., 2018, "Crystallinity and Thermal Stability of Nanocellulose" in Nanocellulose Sustainability, CRC Press, Boca Raton, Florida, US, 67–86.
[34] Dufresne, A., 2013, Nanocellulose: A new ageless bionanomaterial, Mater. Today, 16 (6), 220–227.
[35] Pivec, T., Kargl, R., Maver, U., Bračič, M., Elschner, T., Žagar, E., Gradišnik, L., and Stana Kleinschek, K., 2019, Chemical structure–Antioxidant activity relationship of water–based enzymatic polymerized rutin and its wound healing potential, Polymers, 11 (10), 1566.
[36] Dai, H., Zhang, H., Ma, L., Zhou, H., Yu, Y., Guo, T., Zhang, Y., and Huang, H., 2019, Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synthesis, characterization and naringin prolonged release, Carbohydr. Polym., 209 (381), 51–61.
[37] National Center for Biotechnology Information, 2022, PubChem Compound Summary for CID 5018304, Diclofenac sodium, https://pubchem.ncbi.nlm.nih.gov/compound/Diclofenac-sodium, accessed on 10 September 2021.
DOI: https://doi.org/10.22146/ijc.73357
Article Metrics
Abstract views : 2949 | views : 1796Copyright (c) 2022 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.