Influence of Al and Cu Doping on the Structure, Morphology, and Optical Properties of ZnO Thin Film

Faras Afifah(1), Arif Tjahjono(2), Aga Ridhova(3), Pramitha Yuniar Diah Maulida(4), Alfian Noviyanto(5), Didik Aryanto(6*)

(1) Research Center for Advanced Materials, National Research and Innovation Agency, Kawasan Puspiptek Serpong, Tangerang Selatan, Banten 15314, Indonesia; Department of Physics, Universitas Islam Negeri Syarif Hidayatullah, Jl. Ir. H. Juanda, Cempaka Putih, Jakarta 15412, Indonesia
(2) Department of Physics, Universitas Islam Negeri Syarif Hidayatullah, Jl. Ir. H. Juanda, Cempaka Putih, Jakarta 15412, Indonesia
(3) Research Center for Metallurgy and Materials, National Research and Innovation Agency, Kawasan Puspiptek Serpong, Tangerang Selatan, Banten 15314, Indonesia
(4) Nano Center Indonesia, Jl. Puspiptek, Tangerang Selatan, Banten 15314, Indonesia
(5) Nano Center Indonesia, Jl. Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; Department of Mechanical Engineering, Mercu Buana University, Jl. Meruya Selatan, Kebun Jeruk, Jakarta 11650, Indonesia
(6) Research Center for Advanced Materials, National Research and Innovation Agency, Kawasan Puspiptek Serpong, Tangerang Selatan, Banten 15314, Indonesia
(*) Corresponding Author


In this study, ZnO thin films doped with Al (AZO) and Cu (CZO) were fabricated on a glass substrate via sol-gel spin coating. The influence of 1 atomic % Al and Cu doping on the structure, morphology, as well as optical properties of ZnO thin film was then analyzed with X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. XRD analysis revealed that all samples possessed hexagonal wurtzite crystal structures with 3 to 4 preferred orientations. Al and Cu doping caused a decrease in crystal size, while the lattice strain (e) and dislocation density (ρ) were increased. AFM indicated that Al and Cu doping reduced the surface roughness of the ZnO thin film. Optical measurement showed that all samples exhibited high transmittance (> 80%) in the visible light region. Transmittance was reduced after doping, while the band gaps for ZnO, AZO, and CZO thin films are 3.26, 3.28, and 3.23 eV. This study showed that an addition of 1 atomic % transition metal (Al and Cu) greatly influences the structure, morphology, and optical properties of ZnO thin film.


doping; morphology; optical properties; structure; thin film

Full Text:

Full Text PDF


[1] Aryanto, D., Maulana, R.M., Sudiro, T., Masturi, M., Wismogroho, A.S., Sebayang, P., Ginting, M., and Marwoto, P., 2017, Effect of post-thermal annealing on the structural of ZnO thin films deposited using sol-gel spin-coating method, AIP Conf. Proc., 1862, 030045.

[2] Aryanto, D., Jannah, W.N., Masturi, M., Sudiro, T., Wismogroho, A.S., Sebayang, P., Sugianto, S., and Marwoto, P., 2017, Preparation and structural characterization of ZnO thin films by sol-gel method, J. Phys.: Conf. Ser., 755, 012025.

[3] Giri, P., and Chakrabarti, P., 2016, Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications, Superlattices Microstruct., 93, 248–260.

[4] Sirelkhatim, A., Mahmud, S., Seeni, A., Mohamad Kaus, N.H., Ann, L.C., Mohd Bakhori, S.K., Hasan, H., and Mohamad, D., 2015, Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nano-Micro Lett., 7 (3), 219–242.

[5] Aryanto, D., Marwoto, P., Sudiro, T., Wismogroho, A.S., and Sugianto, S., 2019, Growth of a-axis-oriented Al-doped ZnO thin film on glass substrate using unbalanced DC magnetron sputtering, J. Phys.: Conf. Ser., 1191, 012031.

[6] Aryanto, D., Hastuti, E., Taspika, M., Anam, K., Isnaeni, I., Widayatno, W.B., Wismogroho, A.S., Marwoto, P., Nuryadin, B.W., Noviyanto, A., and Sugianto, S., 2020, Characteristics and photocatalytic activity of highly c-axis-oriented ZnO thin films, J. Sol-Gel Sci. Technol., 96 (1), 226–235.

[7] Nulhakim, L., Makino, H., Kishimoto, S., Nomoto, J., and Yamamoto, T., 2017, Enhancement of the hydrogen gas sensitivity by large distribution of c-axis preferred orientation in highly Ga-doped ZnO polycrystalline thin films, Mater. Sci. Semicond. Process., 68, 322–326.

[8] Yathisha, R.O., and Nayaka, Y.A., 2020, Effect of solvents on structural, optical and electrical properties of ZnO nanoparticles synthesized by microwave heating route, Inorg. Chem. Commun., 115, 107877.

[9] Zhang, W., Gan, J., Li, L., Hu, Z., Shi, L., Xu, N., Sun, J., and Wu, J., 2018, Tailoring of optical and electrical properties of transparent and conductive Al-doped ZnO films by adjustment of Al concentration, Mater. Sci. Semicond. Process., 74, 147–153.

[10] Sahoo, B., Pradhan, S.K., Mishra, D.K., Sahoo, S.K., Nayak, R.R., and Behera, D., 2021, Mutual effect of solvent and Fe-In codoping on structural, optical and electronic properties of ZnO thin films prepared by spray pyrolysis technique, Optik, 228, 166134.

[11] Ge, Z., Wang, C., Chen, T., Chen, Z., Wang, T., Guo, L., Qi, G., and Liu, J., 2020, Preparation of Cu-doped ZnO nanoparticles via layered double hydroxide and application for dye-sensitized solar cells, J. Phys. Chem. Solids, 150, 109833.

[12] Ou, S.L., Lai, F.M., Yuan, L.W., Cheng, D.L., and Kao, K.S., 2016, Characterization of Al-doped ZnO transparent conducting thin film prepared by off-axis magnetron sputtering, J. Nanomater., 2016, 6250640.

[13] Nimbalkar, A., and Patil, M., 2017, Synthesis of highly selective and sensitive Cu-doped ZnO thin film sensor for detection of H2S gas, Mater. Sci. Semicond. Process., 71, 332–341.

[14] Alatawi, N.M., Saad, L.B., Soltane, L., Moulahi, A., Mjejri, I., and Sediri, F., 2021, Enhanced solar photocatalytic performance of Cu-doped nanosized ZnO, Polyhedron, 197, 115022.

[15] Marwoto, P., Wibowo, E., Suprayogi, D., Sulhadi, S., Aryanto, D., and Sugianto, S., 2016, Properties of ZnO:Ga thin films deposited by dc magnetron sputtering: Influence of Ga-doped concentrations on structural and optical properties, Am. J. Appl. Sci., 13 (12), 1394–1399.

[16] Aryanto, D., Hastuti, E., Husniya, N., Sudiro, T., and Nuryadin, B.W., 2018, Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films, J. Phys.: Conf. Ser., 985, 012025.

[17] Koresh, I., and Amouyal, Y., 2017, Effects of microstructure evolution on transport properties of thermoelectric nickel-doped zinc oxide, J. Eur. Ceram. Soc., 37 (11), 3541–3550.

[18] Asikuzun, E., Ozturk, O., Arda, L., and Terzioglu, C., 2018, Preparation, growth and characterization of nonvacuum Cu-doped ZnO thin films, J. Mol. Struct., 1165, 1–7.

[19] Ambedkar, A.K., Singh, M., Kumar, V., Kumar, V., Singh, B.P., Kumar, A., and Gautam, Y.K., 2020, Structural, optical and thermoelectric properties of Al-doped ZnO thin films prepared by spray pyrolysis, Surf. Interfaces, 19, 100504.

[20] Kathwate, L.H., Umadevi, G., Kulal, P.M., Nagaraju, P., Dubal, D.P., Nanjundan, A.K., and Mote, V.D., 2020, Ammonia gas sensing properties of Al doped ZnO thin films, Sens. Actuators, A, 313, 112193.

[21] Wang, D., Zhou, J., and Liu, G., 2009, The microstructure and photoluminescence of Cu-doped ZnO nano-crystal thin films prepared by sol-gel method, J. Alloys Compd., 487 (1-2), 545–549.

[22] Al Farsi, B., Souier, T.M., Al Marzouqi, F., Al Maashani, M., Bououdina, M., Widatallah, H.M., and Al Abri, M., 2021, Structural and optical properties of visible active photocatalytic Al doped ZnO nanostructured thin films prepared by dip coating, Opt. Mater., 113, 110868.

[23] de Lara Andrade, J., Oliveira, A.G., Mariucci, V.V.G., Bento, A.C., Companhoni, M.V., Nakamura, C.V., Lima, S.M., da Cunha Andrade, L.H., Moraes, J.C.G., Hechenleitner, A.A.W., Pineda, E.A.G., and de Oliveira, D.M.F., 2017, Effects of Al3+ concentration on the optical, structural, photocatalytic and cytotoxic properties of Al-doped ZnO, J. Alloys Compd., 729, 978–987.

[24] Ali, G.A., Emam-Ismail, M., El-Hagary, M., Shaaban, E.R., Moustafa, S.H., Amer, M.I., and Shaban, H., 2021, Optical and microstructural characterization of nanocrystalline Cu doped ZnO diluted magnetic semiconductor thin film for optoelectronic applications, Opt. Mater., 119, 111312.

[25] Hsu, C.H., Geng, X.P., Huang, P.H., Wu, W.Y., Zhao, M.J., Zhang, X.Y., Huang, Q.H., Su, Z.B., Chen, Z.R., Lien, S.Y., and Zhu, W.Z., 2021, High doping efficiency Al-doped ZnO films prepared by co-injection spatial atomic layer deposition, J. Alloys Compd., 884, 161025.

[26] Istrate, A.I., Mihalache, I., Romanitan, C., Tutunaru, O., Gavrila, R., and Dediu, V., 2021, Copper doping effect on the properties in ZnO films deposited by sol–gel, J. Mater. Sci.: Mater. Electron., 32 (4), 4021–4033.

[27] Hong, M.H., Choi, H., Shim, D.I., Cho, H.H., Kim, J., and Park, H.H., 2018, Study of the effect of stress/strain of mesoporous Al-doped ZnO thin films on thermoelectric properties, Solid State Sci., 82, 84–91.

[28] Mondal, S., Bhattacharyya, S.R., and Mitra, P., 2013, Effect of Al doping on microstructure and optical band gap of ZnO thin film synthesized by successive ion layer adsorption and reaction, Pramana, 80 (2), 315–326.

[29] Bakhtiargonbadi, F., Esfahani, H., Moakhar, R.S., and Dabir, F., 2020, Fabrication of novel electrospun Al and Cu doped ZnO thin films and evaluation of photoelectrical and sunlight-driven photoelectrochemical properties, Mater. Chem. Phys., 252, 123270.

[30] Jongnavakit, P., Amornpitoksuk, P., Suwanboon, S., and Ndiege, N., 2012, Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method, Appl. Surf. Sci., 258 (20), 8192–8198.

[31] Yang, S., Gu, H., and Huang, A., 2021, Effect of oxygen partial pressure on microstructure, optical and electrical property of C-Al co-doped ZnO films, Mater. Sci. Semicond. Process., 133, 105946.


Article Metrics

Abstract views : 1990 | views : 1152

Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.