Efficient Degradation of Methylene Blue Using La-PTC-HIna/Ti3C2Tx MXene: Adsorption and Photocatalytic Degradation


Agustino Zulys(1*), Adawiah Adawiah(2), Nasruddin Nasruddin(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
(2) Integrated Laboratory Centre, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat 15412, Indonesia
(3) Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
(*) Corresponding Author


Isonicotinic acid is a pyridine carboxylic compound that can be used as a linker to construct coordination complexes. Adding isonicotinic acid (HIna) to the metal-organic framework (MOF) enhanced the MOF surface area, pore volume, and pore size and increased its catalytic activity. Ti3C2Tx MXene nanosheet with excellent metal conductivity was also employed on MOF to optimize its functionality. This work aims to synthesize MOF modulated isonicotinic acid La-PTC-HIna and design the new materials: La-PTC/Ti3C2Tx MXene and La-PTC-HIna/Ti3C2Tx MXene hybrid, then apply them for methylene blue photodegradation. La-PTC-HIna, La-PTC/Ti3C2Tx MXene, and La-PTC-HIna/Ti3C2Tx MXene were synthesized by the sonochemical method. MOF La-PTC-HIna has the highest methylene blue photocatalytic degradation activity than MOF La-PTC, Ti3C2Tx MXene, La-PTC/Ti3C2Tx MXene, and La-PTC-HIna/Ti3C2Tx MXene with degradation efficiency of 99.48% in 20 ppm methylene blue under visible irradiation for 210 min. This study reveals the La-PTC-HIna and La-PTC-HIna/Ti3C2Tx MXene as a new material that has the potential to remove methylene blue from an aqueous solution.


metal-organic framework; Ti3C2Tx MXene; La-PTC; La-PTC-Hina; La-PTC/Ti3C2Tx MXene; La-PTC-HIna/Ti3C2Tx MXene

Full Text:

Full Text PDF


[1] Saeed, M., Usman, M., and ul Haq, A., 2018, “Catalytic Degradation of Organic Dyes in Aqueous Medium” in Photochemistry and Photophysics – Fundamentals to Applications, Eds. Saha, S., and Mundal, S., IntechOpen, Rijeka, Croatia, 197–211.

[2] Khelifi, S., and Ayari, F., 2019, Modified bentonite for anionic dye removal from aqueous solutions. Adsorbent regeneration by the photo-Fenton process, C. R. Chim., 22 (2-3), 154–160.

[3] Saini, J., Garg, V.K., Gupta, R.K., and Kataria, N., 2017, Removal of Orange G and Rhodamine B dyes from aqueous system using hydrothermally synthesized zinc oxide loaded activated carbon (ZnO-AC), J. Environ. Chem. Eng., 5 (1), 884–892.

[4] Fan, Y.H., Zhang, S.W., Qin, S.B., Li, X.S., and Qi, S.H., 2018, An enhanced adsorption of organic dyes onto NH2 functionalization titanium-based metal-organic frameworks and the mechanism investigation, Microporous Mesoporous Mater., 263, 120–127.

[5] Ibrahim, Y., Meslam, M., Eid, K., Salah, B., Abdullah, A.M., Ozoemena, K.I., Elzatahry, A., Sharaf, M.A., and Sillanpa, M., 2022, A review of MXenes as emergent materials for dye removal from wastewater, Sep. Purif. Technol., 282, 120083.

[6] Lu, W., Wei, Z., Gu, Z.Y., Liu, T.F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M., and Zhou, H.C., 2014, Tuning the structure and function of metalorganic frameworks via linker design, Chem. Soc. Rev., 43 (16), 5561–5593.

[7] Alqadami, A.A., Naushad, M., Alothman, Z.A., and Ahamad, T., 2018, Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: Kinetics, isotherm and mechanism, J. Environ. Manage., 223, 29–36.

[8] Gong, X., Zhao, R., Qin, J., Wang, H., and Wang, D., 2019, Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature, Chem. Eng. J., 358, 291–298.

[9] Zulys, A., Adawiah, A., Gunlazuardi, J., and Yudhi, M.D.L., 2021, Light-harvesting metal-organic frameworks (MOFs) La-PTC for photocatalytic dyes degradation, Bull. Chem. React. Eng. Catal., 16 (1), 170–178.

[10] Zhang, F.H., Wang, Y.Y., Lv, C., Li, Y.C., and Zhao, X.Q., 2019, Luminescent complexes associated with isonicotinic acid, J. Lumin., 207, 561–570.

[11] Garibay, S.J., Iordanov, I., Islamoglu, T., DeCoste, J.B., and Farha, O.K., 2018, Synthesis and functionalization of phase-pure NU-901 for enhanced CO2 adsorption: The influence of zirconium salt and modulator on topology and phase purity, CrystEngComm, 20 (44), 7066–7070.

[12] Adawiah, A., Oktavia, W., Saridewi, N., Azhar, F.M., Fitria, R.N., Gunawan, M.S., Komala, S., and Zulys A., 2022, Synthesis metal-organic framework (MOFs) Cr-PTC-HIna modulated isonicotinic acid for methylene blue photocatalytic degradation, Bull. Chem. React. Eng. Catal., 17 (2), 383–393.

[13] Wang, H., Zhao, R., Qin, J., Hu, H., Fan, X., Cao, X., and Wang, D., 2019, MIL-100(Fe)/Ti3C2 MXene as a Schottky catalyst with enhanced photocatalytic oxidation for nitrogen fixation activities, ACS Appl. Mater. Interfaces, 11 (47), 44249–44262.

[14] Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B.C., Hultman, L., Kent, P.R.C., Gogotsi, Y., and Barsoum, M.W., 2015, Two-dimensional, ordered, double transition metals carbides (MXenes), ACS Nano, 9 (10), 9507–9516.

[15] Khazaei, M., Arai, M., Sasaki, T., Chung, C.Y., Venkataramanan, N.S., Estili, M., Sakka, Y., and Kawazoe, Y., 2013, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater., 23 (17), 2185–2192.

[16] Naguib, M., Mochalin, V.N., Barsoum, M.W., and Gogotsi, Y., 2014, MXenes: A new family of two-dimensional materials, Adv. Mater., 26 (7), 992–1005.

[17] Khazaei, M., Arai, M., Sasaki, T., Estili, M., and Sakka, Y., 2014, Two-dimensional molybdenum carbides, potential thermoelectric materials of the MXene family, Phys. Chem. Chem. Phys., 16 (17), 7841–7849.

[18] Jun, B.M., Kim, S., Heo, J., Park, C.M., Her, N., Jang, M., Huang, Y., Han, J., and Yoon, Y., 2018, Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications, Nano Res., 12 (3), 471–487.

[19] Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., and Yunoki, S., 2017, Electronic properties and applications of MXenes: A theoretical review, J. Mater. Chem. C, 5 (10), 2488–2503.

[20] Wang, F., Guo, H., Chai, Y., Li, Y., and Liu, C., 2013, The controlled regulation of morphology and size of HKUST-1 by “coordination modulation method”, Microporous Mesoporous Mater., 173, 181–188.

[21] Tian, P., He, X., Zhao, L., Li, W., Fang, W., Chen, H., Zhang, F., Huang, Z., and Wang, H., 2019, Enhanced charge transfer for efficient photocatalytic H2 evolution over UiO-66-NH2 with annealed Ti3C2Tx MXenes, Int. J. Hydrogen Energy, 44 (2), 788–800.

[22] Zhao, X., Liu, M., Chen, Y., Hou, B., Zhang, N., Chen, B., Yang, N., Chen, K., Li, J., and An, L., 2015, Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries, J. Mater. Chem. A, 3 (15), 7870–7876.

[23] Mu, X., Jiang, J., Chao, F., Lou, Y., and Chen, J., 2018, Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation, Dalton Trans., 47 (6), 1895–1902.

[24] Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall’Agnese, Y., Rozier, P., Taberna, P.L., Naguib, M., Simon, P., Barsoum, M.W., and Gogotsi, Y., 2013, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341 (6153), 1502–1505.

[25] Chang, S.S., Clair, B., Ruelle, J., Beauchêne, J., Di Renzo, F., Quignard, F., Zhao, G.J., Yamamoto, H., and Gril, J., 2009, Mesoporosity as a new parameter for understanding tension stress generation in trees, J. Exp. Bot., 60 (11), 3023–3030.

[26] Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., and Gogotsi, Y., 2017, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater., 29 (18), 7633–7644.

[27] My Tran, N., Thanh Hoai Ta, Q., Sreedhar, A., and Noh. J.S., 2021, Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater, Appl. Surf. Sci., 537, 148006.

[28] Lim, S., Kim, J.H., Park, H., Kwak, C., Yang, J., Kim, J., Ryu, S.Y., and Lee, J., 2021, Role of electrostatic interactions in the adsorption of dye molecules by Ti3C2-MXenes, RSC Adv., 11 (11), 6201–6211.

[29] Hasan, Z., and Jhung, S.H., 2015, Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions, J. Hazard. Mater., 283, 329–339.

[30] Gupta, N.K., Bae, J., and Kim, K.S., 2022, Role of bimetallic solution in the growth and functionality of Cu-BTC metal-organic framework, Materials, 15 (8), 2804.

[31] Hasan, M.R., 2015, Pengaruh Penambahan Modulator Asam Asetat pada Sintesis Metal Organic Framework Tipe HKUST-1, Undergraduate Thesis, Intitute Teknologi Sepuluh Nopember, Surabaya, Indonesia.

[32] Tambun, R., Limbong, H.P., Pinem, C., and Manurung, E., 2016, Pengaruh ukuran partikel, waktu dan suhu pada ekstraksi fenol dari lengkuas merah, Jurnal Teknik Kimia USU, 5 (4), 53–56.

DOI: https://doi.org/10.22146/ijc.71692

Article Metrics

Abstract views : 1370 | views : 703

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.