The Optimization of Silica-Based Composite Membrane from Volcanic Ash of Mount Sinabung, Titanium Dioxide, and Polyvinyl Alcohol for River Water Treatment through Photocatalyst Process

Moraida Hasanah(1), Timbangen Sembiring(2), Zuriah Sitorus(3), Syahrul Humaidi(4*), Fynnisa Zebua(5), Rahmadsyah Rahmadsyah(6)

(1) Postgraduate Program (Physics), Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1 Padang Bulan, Medan 20155, Indonesia Department of Mechanical Engineering, Universitas Asahan, Kisaran Timur, Kisaran 21216, Indonesia
(2) Postgraduate Program (Physics), Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1 Padang Bulan, Medan 20155, Indonesia
(3) Postgraduate Program (Physics), Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1 Padang Bulan, Medan 20155, Indonesia
(4) Postgraduate Program (Physics), Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1 Padang Bulan, Medan 20155, Indonesia
(5) Department of Civil Engineering, Universitas Asahan, Kisaran Timur, Kisaran 21216, Indonesia
(6) Department of Mechanical Engineering, Universitas Asahan, Kisaran Timur, Kisaran 21216, Indonesia
(*) Corresponding Author


The application of composite membranes consisting of SiO2 from the volcanic ash of Mount Sinabung, TiO2, and PVA on a laboratory scale has been investigated to improve the Silau River’s water quality in Asahan Regency. The purpose of this study is to determine the optimal combination of SiO2, TiO2, and PVA for treating river water to minimize its heavy metal content and color intensity to achieve clean water requirements. The membranes were prepared by drop-casting with varied compositions of PVA/40TiO2/60SiO2, PVA/60TiO2/40SiO2, PVA/80TiO2/20SiO2, and PVA/100TiO2/0SiO2. PVA was dissolved in aquadest, mixed with SiO2 and TiO2, then imprinted and dried for 24 h at 50 °C. A photocatalyst test was performed on each composition variation to see how the Silau River water’s color changed over time. The PVA/80TiO2/20SiO2 membrane’s composition fluctuated the highest during photocatalyst testing, with 45.95% degradation. The parameter results on the Silau River water test, namely turbidity, color, and chromium values, were reduced by photocatalysis of a PVA/80TiO2/20SiO2 composite membrane to 16 NTU, 30 TCU, and 0.013 mg/L, respectively. These results met the clean water quality criteria specified by Minister of Health of the Republic of Indonesia Decree No. 416/MENKES/PER/IX/1990.


silica-based composite membrane; photocatalyst; river water treatment

Full Text:

Full Text PDF


[1] Nasution, H.A., and Sihombing, A.T., 2017, Analisis kandungan logam berat timbal (Pb) dalam air sungai silau di kota kisaran, Seminar Nasional Multidisiplin Ilmu 2017, Universitas Asahan, September 22, 2017.

[2] Asadiya, A., and Karnaningroem, N., 2018, Pengolahan air limbah domestik menggunakan proses aerasi, pengendapan, dan filtrasi media zeolit-arang aktif, Jurnal Teknik ITS, 7 (1), D18–D22.

[3] Chau, J.H.F., Lee, K.M., Pang, Y.L., Abdullah, B., Juan, J.C., Leo, B.F., and Lai, C.W., 2021, Photodegradation assessment of RB5 dye by utilizing WO3/TiO2 nanocomposite: A cytotoxicity study, Environ. Sci. Pollut. Res., 29 (15), 22372–22390.

[4] Gopinath, K.P., Madhav, N.V., Krishnan, A., Malolan, R., and Rangarajan, G., 2020, Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review, J. Environ. Manage., 270, 110906.

[5] Purbia, R., Borah, R., and Paria, S., 2017, Carbon-doped mesoporous anatase TiO2 multi-tubes nanostructures for highly improved visible light photocatalytic activity, Inorg. Chem., 56 (16), 10107–10116.

[6] Yang, Y., Zhang, Q., Deng, Y., Zhu, C., Wang, D., and Li, Z., 2017, Synthesis of Nano TiO2-Fe2O3 Photocatalyst and Photocatalytic Degradation Properties on Oxytetracycline Hydrochloride, Proceedings of the 2017 7th International Conference on Manufacturing Science and Engineering (ICMSE 2017), Atlantis Press, Paris, France., 216–219.

[7] Fayrus, M., Putra Santoso, A.Y., and Muljani, S., 2020, Sintesis komposit titania-silika dengan proses sol gel, ChemPro, 1 (1), 36–40.

[8] Hakki, A., Yang, L., Wang, F., and Macphee, D.E., 2017, The effect of interfacial chemical bonding in TiO2-SiO2 composites on their photocatalytic NOx abatement performance, J. Visualized Exp., 125, e56070.

[9] Rasheed, T., Adeel, M., Nabeel, F., Bilal, M., and Iqbal, H.M.N., 2019, TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal, Sci. Total Environ., 688, 299–311.

[10] Hasanah, M., Sembiring, T., Sebayang, K., Humaidi, S., Rahmadsyah, Saktisahdan, T.J., Handoko, F., and Ritonga, S.I., 2021, extraction of silica dioxide (SiO2) from mount Sinabung volcanic ash with coprecipitation method, IOP Conf. Ser.: Mater. Sci. Eng., 1156, 012015.

[11] Kariminejad, M., Zibaei, R., Kolahdouz-Nasiri, A., Mohammadi, R., Mortazavian, A.M., Sohrabvandi, S., Khanniri, E., and Khorshidian, N., 2021, Chitosan/polyvinyl alcohol/SiO2 nanocomposite films: Physicochemical and structural characterization, Biointerface Res. Appl. Chem., 12 (3), 3725–3734.

[12] Huang, F., Hao, H., Sheng, W., and Lang, X., 2021, Dye-TiO2/SiO2 assembly photocatalysis for blue light-initiated selective aerobic oxidation of organic sulfides, Chem. Eng. J., 423, 129419.

[13] Rodrigues, I.R., de Camargo Forte, M.M., Azambuja, D.S., and Castagno, K.R.L., 2007, Synthesis and characterization of hybrid polymeric networks (HPN) based on polyvinyl alcohol/chitosan, React. Funct. Polym., 67 (8), 708–715.

[14] Mirabedini, A., Mirabedini, S.M., Babalou, A.A., and Pazokifard, S., 2011, Synthesis, characterization and enhanced photocatalytic activity of TiO2/SiO2 nanocomposite in an aqueous solution and acrylic-based coatings, Prog. Org. Coat., 72 (3), 453–460.

[15] Yudo, S., and Said, N.I., 2019, Kondisi kualitas air sungai Surabaya studi kasus: Peningkatan kualitas air baku PDAM Surabaya, JTL, 20 (1), 19–28.

[16] Khalil, A., Aboamera, N.M., Nasser, W.S., Mahmoud, W.H., and Mohamed, G.G., 2019, photodegradation of organic dyes by PAN/SiO2-TiO2-NH2 nanofiber membrane under visible light, Sep. Purif. Technol., 224, 509–514.

[17] Azari, M., Sadeghi, M., Aroon, M., and Matsuura, T., 2019, Polyurethane mixed matrix membranes for gas separation: A systematic study on effect of SiO2/TiO2 nanoparticles, J. Membr. Sci. Res., 5 (1), 33–43.

[18] Soudagar, M.E.M., Nik-Ghazali, N.N., Kalam, M.A., Badruddin, I.A., Banapurmath, N.R., Yunus Khan, T.M., Bashir, M.N., Akram, N., Farade, R., and Afzal, A., 2019, The effects of graphene oxide nanoparticle additive stably dispersed in dairy scum oil biodiesel-diesel fuel blend on CI engine: Performance, emission and combustion characteristics, Fuel, 257, 116015.

[19] Yun, J., Im, J.S., Oh, A., Jin, D.H., Bae, T.S., Lee, Y.S., and Kim, H.I., 2011, pH-sensitive photocatalytic activities of TiO2/poly(vinyl alcohol)/poly(acrylic acid) composite hydrogels, Mater. Sci. Eng., B, 176 (3), 276–281.

[20] Jiang, Q., Huang, J., Ma, B., Yang, Z., Zhang, T., and Wang, X., 2020, Recyclable, hierarchical hollow photocatalyst TiO2@SiO2 composite microsphere realized by raspberry-like SiO2, Colloids Surf., A, 602, 125112.

[21] Takari, A., Ghasemi, A.R., Hamadanian, M., Sarafrazi, M., and Najafidoust, A., 2021, Molecular dynamics simulation and thermo-mechanical characterization for optimization of three-phase epoxy/TiO2/SiO2 nano-composites, Polym. Test., 93, 106890.

[22] de Lima, G.G., Ferreira, B.D., Matos, M., Pereira, B.L., Nugent, M.J.D., Hansel, F.A., and Magalhães, W.L.E., 2020, Effect of cellulose size-concentration on the structure of polyvinyl alcohol hydrogels, Carbohydr. Polym., 245, 116612.

[23] Wang, C., Feng, Z., Zhao, Y., Li, X., Li, W., Xie, X., Wang, S., and Hou, H., 2017, Preparation and properties of ion exchange membranes for PEMFC with sulfonic and carboxylic acid groups based on polynorbornenes, Int. J. Hydrogen Energy, 42 (50), 29988–29994.

[24] Zhang, Z., Hu, L., Zhang, H., Yu, L., and Liang, Y., 2020, Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance, Front. Mater. Sci., 14 (2), 163–176.

[25] Zhang, M., E, L., Zhang, R., and Liu, Z., 2019, The effect of SiO2 on TiO2-SiO2 composite film for self-cleaning application, Surf. Interfaces, 16, 194–198.

[26] Wang, P., Wang, C., Wang, H., Long, H., and Zhou, T., 2022, Effects of SiO2, CaO and basicity on reduction behaviors and swelling properties of fluxed pellet at different stages, Powder Technol., 396, 477–489.

[27] Azzaz, A.A., Jellali, S., Hamed, N.B.H., El Jery, A., Khezami, L., Assadi, A.A., and Amrane, A., 2021, Photocatalytic treatment of wastewater containing simultaneous organic and inorganic pollution: competition and operating parameters effects, Catalysts, 11 (7), 855.

[28] Schraufnagel, D.E., 2020, The health effects of ultrafine particles, Exp. Mol. Med., 52 (3), 311–317.


Article Metrics

Abstract views : 2946 | views : 2034

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.