Potential Adenostemma lavenia and Muntingia calabura Extracts to Inhibit Cyclooxygenase-2 Activity as a Therapeutic Strategy for Anti-inflammation: Experimental and Theoretical Studies


Bagaskoro Tuwalaid(1), Dyah Iswantini(2), Setyanto Tri Wahyudi(3*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; Tropical Biopharmaca Research Center, IPB University, Taman Kencana Campus, Bogor 16128, Indonesia
(3) Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
(*) Corresponding Author


Continuous inflammation can cause new and more severe diseases, thus effective treatments are needed. One of the common inflammation treatments is given by reducing prostaglandins' production through the inhibition of COX-2 activity. This experiment aims to examine the potential application of plant extracts of Adenostemma lavenia and Muntingia calabura (Jamaica cherry) as anti-inflammatory agents in inhibiting COX-2 activity through in silico and in vitro assays. Molecular docking and molecular dynamics simulation were accomplished to evaluate the stability of the complex between COX-2 and ligands. The COX-2 inhibition was determined using the COX-2 Inhibitor Screening Assay KIT. Based on the docking results, the active compound from A. lavenia, ligand 1a,9b-dihydro-1H-cyclopropa[a]anthracene, has the lowest binding energy of -8.7 kcal/mol. In comparison, M. calabura contains 7-hydroxyflavone ligand with a Gibbs free energy of -9.1 kcal/mol. The molecular dynamics study demonstrates that COX-2 maintains its stability when forming interactions with selected compounds from all the tested extracts. The results of the COX-2 inhibition test showed that 96% EtOH extract of A. Lavenia at concentrations of 25 and 100 ppm had an inhibitory activity of 98%; meanwhile, 70% and 96% EtOH extracts of M. calabura at 1000 ppm concentration could inhibit COX-2 activity up to 100%. The results demonstrate that both plants show potential anti-inflammatory activity.


anti-inflammatory; herbal medicine; in vitro; molecular docking; molecular dynamics.


[1] Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., and Zhao, L., 2018, Inflammatory responses and inflammation-associated diseases in organs, Oncotarget, 9 (6), 7204–7218.

[2] Merad, M., and Martin, J.C., 2020, Author correction: Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages, Nat. Rev. Immunol., 20 (7), 448.

[3] Syahputra, G., Ambarsari, L., and Sumaryada, T., 2014, Simulasi docking kurkumin enol, bisdemetoksikurkumin dan analognya sebagai inhibitor enzim12-lipoksigenase, J. Biofisika, 10 (1), 55–67.

[4] Wang, T., Fu, X., Chen, Q., Patra, J.K., Wang, D., Wang, Z., and Gai, Z., 2019, Arachidonic acid metabolism and kidney inflammation, Int. J. Mol. Sci., 20 (15), 3683.

[5] Wongrakpanich, S., Wongrakpanich, A., Melhado, K., and Rangaswami, J., 2018, A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly, Aging Dis., 9 (1), 143–150.

[6] Saikia, S., and Bordoloi, M., 2019, Molecular docking: Challenges, advances and its use in drug discovery perspective, Curr. Drug Targets, 20 (5), 501–521.

[7] Salmaso, V., and Moro, S., 2018, Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview, Front. Pharmacol., 9, 923.

[8] Ravindranath, P.A., Forli, S., Goodsell, D.S., Olson, A.J., and Sanner, M.F., 2015, AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility, PLOS Comput. Biol., 11 (12), e1004586.

[9] De Vivo, M., Masetti, M., Bottegoni, G., and Cavalli, A., 2016, Role of molecular dynamics and related methods in drug discovery, J. Med. Chem., 59 (9), 4035–4061.

[10] Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., and Woods, R.J., 2005, The Amber biomolecular simulation programs, J. Comput. Chem., 26 (16), 1668–1688.

[11] Chen, J.J., Deng, J.S., Huang, C.C., Li, P.Y., Liang, Y.C., Chou, C.Y., and Huang, G.J., 2019, p-Coumaric-acid-containing Adenostemma lavenia ameliorates acute lung injury by activating AMPK/Nrf2/HO-1 signaling and improving the anti-oxidant response, Am. J. Chin. Med., 47 (7), 1483–1506.

[12] Cheng, P.C., Hufford, C.D., and Doorenbos, N.J., 1979, Isolation of 11-hydroxyated kauranic acids from Adenostemma lavenia, J. Nat. Prod., 42 (2), 183–186.

[13] Lin, J.T., Chang, Y.Y., Chen, Y.C., Shen, B.Y., and Yang, D.J., 2017, Molecular mechanisms of the effects of the ethanolic extract of Muntingia calabura Linn. fruit on lipopolysaccharide-induced pro-inflammatory mediators in macrophages, Food Funct., 8 (3), 1245–1253.

[14] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., 2004, UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., 25 (13), 1605–1612.

[15] Morris, G.M., Huey, R., and Olson, A.J., 2008, Using AutoDock for Ligand‐Receptor Docking, Curr. Protoc. Bioinf., 24 (1), 8.14.1–8.14.40.

[16] Zubair, M.S., Anam, S., Maulana, S., and Arba, M., 2021, In vitro and in silico studies of quercetin and daidzin as selective anticancer agents, Indones. J. Chem., 21 (2), 310–317.

[17] Gordon, J.C., Myers, J.B., Folta, T., Shoja, V., Heath, L.S., and Onufriev, A., 2005, H++: A server for estimating pKas and adding missing hydrogens to macromolecules, Nucleic Acids Res., 33 (Suppl. 2), W368–W371.

[18] Myers, J., Grothaus, G., Narayanan, S., and Onufriev, A., 2006, A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules, Proteins: Struct., Funct., Bioinf., 63 (4), 928–938.

[19] Anandakrishnan, R., Aguilar, B., and Onufriev, A.V., 2012, H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations, Nucleic Acids Res., 40 (W1), W537–W541.

[20] Radwan, A., and Mahrous, G.M., 2020, Docking studies and molecular dynamics simulations of the binding characteristics of waldiomycin and its methyl ester analog to Staphylococcus aureus histidine kinase, PLoS One, 15 (6), e0234215.

[21] Rawat, C., Kukal, S., Dahiya, U.R., and Kukreti, R., 2019, Cyclooxygenase-2 (COX-2) inhibitors: Future therapeutic strategies for epilepsy management, J. Neuroinflammation, 16 (1), 197.

[22] Orlando, B.J., and Malkowski, M.G., 2016, Substrate-selective inhibition of cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone, J. Biol. Chem., 291 (29), 15069–15081.

[23] Fauzan, A., Praseptiangga, D., Hartanto, R., and Pujiasmanto, B., 2018, Characterization of the chemical composition of Adenostemma lavenia (L.) Kuntze and Adenostemma platyphyllum Cass, IOP Conf. Ser.: Earth Environ. Sci., 102, 012029.

[24] Mahmood, N.D., Nasir, N.L.M., Rofiee, M.S., Tohid, S.F.M., Ching, S.M., Teh, L.K., Salleh, M.Z., and Zakaria, Z.A., 2014, Muntingia calabura: A review of its traditional uses, chemical properties, and pharmacological observations, Pharm. Biol., 52 (12), 1598–1623.

[25] Krishnaveni, M., and Dhanalakshmi, R., 2014, Qualitative and quantitative study of phytochemicals in Muntingia calabura L. leaf and fruit, World J. Pharm. Res., 3 (6), 1687–1696.

[26] Rachmania, R.A., Supandi, S., and Cristina, F.A.D., 2016, Analisis penambatan molekul senyawa flavonoid buah mahkota dewa (Phaleria macrocarpa (Scheff.) Boerl.) pada reseptor α-glukosidase sebagai antidiabetes, Pharm. J. Indones., 13 (2), 239–251.

[27] Legiawati, L., Fadilah, F., Bramono, K., and Indriatmi, W., 2018, In silico study of Centella asiatica active compounds as anti-inflammatory agent by decreasing IL-1 and IL-6 activity, promoting IL-4 activity, J. Pharm. Sci. Res., 10 (9), 2142–2147.

[28] Altman, R., Bosch, B., Brune, K., Patrignani, P., and Young, C., 2015, Advances in NSAID development: Evolution of diclofenac products using pharmaceutical technology, Drugs, 75 (8), 859–877.

[29] Jin, Z., Yang, Y.Z., Chen, J.X., and Tang, Y.Z., 2017, Inhibition of pro-inflammatory mediators in RAW264.7 cells by 7-hydroxyflavone and 7,8-dihydroxyflavone, J. Pharm. Pharmacol., 69 (7), 865–874.

[30] Taidi, L., Maurady, A., and Britel, M.R., 2022, Molecular docking study and molecular dynamic simulation of human cyclooxygenase-2 (COX-2) with selected eutypoids, J. Biomol. Struct. Dyn., 40 (3), 1189–1204.

[31] Kartasasmita, R.E., Herowati, R., Harmastuti, N., and Gusdinar, T., 2009, Quercetin derivatives docking based on study of flavonoids interaction to cyclooxygenase-2, Indones. J. Chem., 9 (2), 297–302.

[32] Guo, C., Yang, L., Wan, C.X., Xia, Y.Z., Zhang, C., Chen, M.H., Wang, Z.D., Li, Z.R., Li, X.M., Geng, Y.D., and Kong, L.Y., 2016, Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways, Phytomedicine, 23 (13), 1629–1637.

[33] González Mosquera, D.M., Hernández Ortega, Y., Fernández, P.L., González, Y., Doens, D., Vander Heyden, Y., Foubert, K., and Pieters, L., 2018, Flavonoids from Boldoa purpurascens inhibit proinflammatory cytokines (TNF-α and IL-6) and the expression of COX-2, Phytother. Res., 32 (9), 1750–1754.

[34] Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., 2001, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Delivery Rev., 46 (1-3), 3–26.

[35] Gao, Y., Gesenberg, C., and Zheng, W., 2017, "Oral Formulations for Preclinical Studies: Principle, Design, and Development Considerations" in Developing Solid Oral Dosage Forms, 2nd Ed., Eds. Qiu, Y., Chen, Y., Zhang, G.G.Z., Yu, L., and Mantri, R.V., Academic Press, Boston, US, 455–495.

[36] Hughes, J.D., Blagg, J., Price, D.A., Bailey, S., DeCrescenzo, G.A., Devraj, R.V., Ellsworth, E., Fobian, Y.M., Gibbs, M.E., Gilles, R.W., Greene, N., Huang, E., Krieger-Burke, T., Loesel, J., Wager, T., Whiteley, L., and Zhang, Y., 2008, Physiochemical drug properties associated with in vivo toxicological outcomes, Bioorg. Med. Chem. Lett., 18 (17), 4872–4875.

[37] Ajay Kumar, T.V., Kabilan, S., and Parthasarathy, V., 2017, Screening and toxicity risk assessment of selected compounds to target cancer using QSAR and pharmacophore modelling, Int. J. PharmTech Res., 10 (4), 219–224.

[38] Sultan, M.A., Galil, M.S.A., Al-Qubati, M., Omar, M.M., and Barakat, A., 2020, Synthesis, molecular docking, druglikeness analysis, and ADMET prediction of the chlorinated ethanoanthracene derivatives as possible antidepressant agents, Appl. Sci., 10 (21), 7727.

[39] Sander, T., Freyss, J., von Korff, M., and Rufener, C., 2015, DataWarrior: An open-source program for chemistry aware data visualization and analysis, J. Chem. Inf. Model., 55 (2), 460–473.

[40] Reddy, K.K., Vidya Rajan, V.K., Gupta, A., Aparoy, P., and Reddanna, P., 2015, Exploration of binding site pattern in arachidonic acid metabolizing enzymes, cyclooxygenases and lipoxygenases, BMC Res. Notes, 8 (1), 152.

[41] Wang, B., Wu, L., Chen, J., Dong, L., Chen, C., Wen, Z., Hu, J., Fleming, I., and Wang, D.W., 2021, Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets, Signal Transduction Targeted Ther., 6 (1), 94.

[42] Rouzer, C.A., and Marnett, L.J., 2020, Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs, Chem. Rev., 120 (15), 7592–7641.

[43] Deb, P.K., Mailabaram, R.P., Al-Jaidi, B., and Saadh, M.J., 2017, "Molecular Basis of Binding Interactions of NSAIDs and Computer-Aided Drug Design Approaches in the Pursuit of the Development of Cyclooxygenase-2 (COX-2) Selective Inhibitors" in Nonsteroidal Anti-Inflammatory Drugs, Eds. Al-kaf, A.G., IntechOpen, Rijeka, Croatia.

[44] Syahputra, G., 2014, Simulasi Docking Senyawa Kurkumin dan Analognya sebagai Inhibitor Enzim 12-Lipoksigenase, Thesis, Institut Pertanian Bogor.

[45] Mahapatra, M.K., Bera, K., Singh, D.V., Kumar, R., and Kumar, M., 2018, In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors, J. Biomol. Struct. Dyn., 36 (5), 1195–1211.

[46] Zhao, Y., Zeng, C., and Massiah, M.A., 2015, Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain, PLoS One, 10 (4), e0124377.

[47] Khan, S., Farooq, U., and Kurnikova, M., 2017, Protein stability and dynamics influenced by ligands in extremophilic complexes – A molecular dynamics investigation, Mol. Biosyst., 13 (9), 1874–1887.

[48] Genheden, S., and Ryde, U., 2015, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opin. Drug Discovery, 10 (5), 449–461.

[49] Botelho, F.D., dos Santos, M.C., Gonçalves, A.S., Kuca, K., Valis, M., LaPlante, S.R., França, T.C.C., and de Almeida, J.S.F.D., 2020, Ligand-based virtual screening, molecular docking, molecular dynamics, and MM-PBSA calculations towards the identification of potential novel ricin inhibitors, Toxins, 12 (12), 746.

[50] Al-Thiabat, M.G., Mohd Gazzali, A., Mohtar, N., Murugaiyah, V., Kamarulzaman, E.E., Yap, B.K., Abd Rahman, N., Othman, R., and Wahab, H.A., 2021, Conjugated β-Cyclodextrin Enhances the Affinity of Folic Acid towards FRα: Molecular Dynamics Study, Molecules, 26 (17), 5304.

[51] Ye, H., Wu, Q., Guo, M., Wu, K., Lv, Y., Yu, F., Liu, Y., Gao, X., Zhu, Y., Cui, L., Liang, N., Yun, T., Li, L., and Zheng, X., 2016, Growth inhibition effects of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid on colorectal carcinoma cells and colon carcinoma-bearing mice, Mol. Med. Rep., 13 (4), 3525–3532.

[52] Soekaryo, E., Simanjuntak, P., and Setyahadi, S., 2016, Uji Inhibisi Enzim Siklooksigenase-2 (COX-2) dari Ekstrak Daun Sirsak (Annona muricata Linn.) sebagai Antiinflamasi, The 4th Univesity Research Coloquium 2016, STIKES Muhammadiyah Pekajangan, Pekalongan, 485–492.

[53] Hashmi, M.A., Khan, A., Farooq, U., and Khan, S., 2018, Alkaloids as cyclooxygenase inhibitors in anticancer drug discovery, Curr. Protein Pept. Sci., 19 (3), 292–301.

[54] Joy, M., and Chakraborty, K., 2018, Previously undisclosed bioactive sterols from corbiculid bivalve clam Villorita cyprinoides with anti-inflammatory and antioxidant potentials, Steroids, 135, 1–8.

[55] Lago, J.H.G., Toledo-Arruda, A.C., Mernak, M., Barrosa, K.H., Martins, M.A., Tibério, I.F.L.C., and Prado, C.M., 2014, Structure-activity association of flavonoids in lung diseases, Molecules, 19 (3), 3570–3595.

DOI: https://doi.org/10.22146/ijc.70794

Article Metrics

Abstract views : 3044 | views : 1683 | views : 815

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.