Codoping Effect of Nitrogen (N) to Iron (Fe) Doped Zirconium Titanate (ZrTiO4) Composite toward Its Visible Light Responsiveness as Photocatalysts

Rizka Hayati(1), Rian Kurniawan(2), Niko Prasetyo(3), Sri Sudiono(4), Akhmad Syoufian(5*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author


Iron (Fe) and nitrogen (N) were introduced as dopants into zirconium titanate (ZrTiO4) in order to study the codoping effects of nitrogen on iron-doped zirconium titanate (Fe,N-codoped ZrTiO4) composite. Titanium tetraisopropoxide (TTIP), zirconia (ZrO2), urea, and iron(II) sulfate heptahydrate were used as the source of TiO2, semiconductor supports, source of nitrogen, and iron, respectively. A specific amount of iron (1, 3, 5, 7, and 9 wt.%) and a fixed nitrogen content (10 wt.%) were doped into the ZrTiO4 lattice. Various calcination temperatures (from 500 to 900 °C) were also applied to investigate the crystal structure of the composite. The composites were characterized by X-ray powder diffractometer (XRD), Fourier-transform infrared spectrophotometer (FT-IR), scanning electron microscope with energy dispersive X-Ray spectrometer (SEM-EDX), and specular reflectance UV-Vis (SR-UV). The lowest bandgap energy of 2.62 eV was obtained in the composite with 3 wt.% of Fe and 10 wt.% of N calcined at 500 °C.


codoping; Fe,N-codoped ZrTiO4; composite; iron; nitrogen

Full Text:

Full Text PDF


[1] Huang, W.C., and Ting, J.M., 2017, Novel nitrogen-doped anatase TiO2 mesoporous bead photocatalysts for enhanced visible light response, Ceram. Int., 43 (13), 9992–9997.

[2] Zhang, J., Li, L., Xiao, Z., Liu, D., Wang, S., Zhang, J., Hao, Y., and Zhang, W., 2016, Hollow sphere TiO2-ZrO2 prepared by self-assembly with polystyrene colloidal template for both photocatalytic degradation and H2 evolution from water splitting, ACS Sustainable Chem. Eng., 4 (4), 2037–2046.

[3] Song, J., Wang, X., Bu, Y., Wang, X., Zhang, J., Huang, J., Ma, R.R., and Zhao, J., 2017, Photocatalytic enhancement of floating photocatalyst: Layer-by-layer hybrid carbonized chitosan and Fe-N-codoped TiO2 on fly ash cenospheres, Appl. Surf. Sci., 391, 236–250.

[4] Kalantari, K., Kalbasi, M., Sohrabi, M., and Royaee, S.J., 2017, Enhancing the photocatalytic oxidation of dibenzothiophene using visible light responsive Fe and N co-doped TiO2 nanoparticles, Ceram. Int., 43 (1), 973–981.

[5] Zhang, J., Zhou, P., Liu, J., and Yu, J., 2014, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys., 16 (38), 20382–20386.

[6] Lin, H.Y., and Shih, C.Y., 2015, Efficient one-pot microwave-assisted hydrothermal synthesis of M (M = Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting, J. Mol. Catal. A: Chem., 411, 128–137.

[7] Wang, J., Zhao, Y.F., Wang, T., Li, H., and Li, C., 2015, Photonic, and photocatalytic behavior of TiO2 mediated by Fe, Co, Ni, N doping and co-doping, Phys. B, 478, 6–11.

[8] Zou, M., Feng, L., Ganeshraja, A.S., Xiong, F., and Yang, M., 2016, Defect induced nickel, nitrogen-codoped mesoporous TiO2 microspheres with enhanced visible light photocatalytic activity, Solid State Sci., 60, 1–10.

[9] Barkhade, T., and Banerjee, I., 2019, Optical properties of Fe doped TiO2 nanocomposites synthesized by sol-gel technique, Mater. Today: Proc., 18, 1204–1209.

[10] Zhang, Y., Shen, Y., Gu, F., Wu, M., Xie, Y., and Zhang, J., 2009, Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films, Appl. Surf. Sci., 256 (1), 85–89.

[11] Basavarajappa, P.S., Patil, S.B., Ganganagappa, N., Reddy, K.R., Raghu, A.V, and Reddy, C.V., 2020, Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis, Int. J. Hydrogen Energy, 45 (13), 7764–7778.

[12] Cong, Y., Zhang, J., Chen, F., and Anpo, M., 2007, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity, J. Phys. Chem. C, 111 (19), 6976–6982.

[13] Shen, J.H., Tang, Y.H., Jiang, Z.W., Liao, D.Q., and Horng, J.J., 2021, Optimized preparation and characterization of Co-N codoped TiO2 with enhanced visible light activity: An insight into effect of dopants on surface redox reactions of photogenerated charge carriers for hydroxyl radical formation, J. Alloys Compd., 862, 158697.

[14] Linnik, O., Shestopal, N., Smirnova, N., Eremenko, A., Korduban, O., Kandyba, V., Kryshchuk, T., Socol, G., Stefan, N., Popescu-Pelin, G., Ristoscu, C., and Mihailescu, I.N., 2015, Correlation between electronic structure and photocatalytic properties of non-metal doped TiO2/ZrO2 thin films obtained by pulsed laser deposition method, Vacuum, 114, 166–171.

[15] Sinhmar, A., Setia, H., Kumar, V., Sobti, A., and Toor, A.P., 2020, Enhanced photocatalytic activity of nickel and nitrogen codoped TiO2 under sunlight, Environ. Technol. Innovation, 18, 100658.

[16] Farkas, B., Budai, J., Kabalci, I., Heszler, P., and Geretovszky, Z., 2008, Optical characterization of PLD grown nitrogen-doped TiO2 thin films, Appl. Surf. Sci., 254 (11), 3484–3488.

[17] Di Valentin, C., Pacchioni, G., and Selloni, A., 2004, Origin of the different photoactivity of N-doped anatase and rutile TiO2, Phys. Rev. B: Condens. Matter Mater. Phys., 70 (8), 085116.

[18] Gurushantha, K., Anantharaju, K.S., Nagabhushana, H., Sharma, S.C., Vidya, Y.S., Shivakumara, C., Nagaswarupa, H.P., Prashantha, S.C., and Anilkumar, M.R., 2015, Facile green fabrication of iron-doped cubic ZrO2 nanoparticles by Phyllanthus acidus: Structural, photocatalytic and photoluminescent properties, J. Mol. Catal. A: Chem., 397, 36–47.

[19] de Moraes, N.P., de Azeredo, C.A.S.H., Bacetto, L.A., da Silva, M.L.C.P., and Rodrigues, L.A., 2018, The effect of C-doping on the properties and photocatalytic activity of ZrO2 prepared via sol-gel route, Optik, 165, 302–309.

[20] Syoufian, A., Manako, Y., and Nakashima, K., 2015, Sol-gel preparation of photoactive srilankite-type zirconium titanate hollow spheres by templating sulfonated polystyrene latex particles, Powder Technol., 280, 207–210.

[21] Kim, J.Y., Kim, C.S., Chang, H.K., and Kim, T.O., 2010, Effects of ZrO2 addition on phase stability and photocatalytic activity of ZrO2/TiO2 nanoparticles, Adv. Powder Technol., 21 (2), 141–144.

[22] Chang, S.M., and Doong, R.A., 2006, Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures, J. Phys. Chem. B, 110 (42), 20808–20814.

[23] Wan, L., Gao, Y., Xia, X.H., Deng, Q.R., and Shao, G., 2011, Phase selection and visible light photo-catalytic activity of Fe-doped TiO2 prepared by the hydrothermal method, Mater. Res. Bull., 46 (3), 442–446.

[24] Kumar, K.D., Kumar, G.P., and Reddy, K.S., 2015, Rapid microwave synthesis of reduced graphene oxide-supported TiO2 nanostructures as high performance photocatalyst, Mater. Today: Proc., 2 (4-5), 3736–3742.

[25] Abdelhaleem, A., Chu, W., and Liang, X., 2019, Diphenamid degradation via sulfite activation under visible LED using Fe (III) impregnated N-doped TiO2 photocatalyst, Appl. Catal., B, 244, 823–835.

[26] Saidani, T., Zaabat, M., Aida, M.S., Benaboud, A., Benzitouni, S., and Boudine, A., 2014, Influence of annealing temperature on the structural, morphological and optical properties of Cu doped ZnO thin films deposited by the sol-gel method, Superlattices Microstruct., 75, 47–53.

[27] Sharon, M., Modi, F., and Sharon, M., 2016, Titania based nanocomposites as a photocatalyst: A review, AIMS Mater. Sci., 3 (3), 1236–1254.

[28] Aba-Guevara, C.G., Medina-Ramírez, I.E., Hernández-Ramírez, A., Jáuregui-Rincón, J., Lozano-Álvarez, J.A., and Rodríguez-López, J.L., 2017, Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light, Ceram. Int., 43 (6), 5068–5079.

[29] Ning, Q., Zhang, L., Liu, C., Li, X., Xu, C., and Hou, X., 2021, Boosting photogenerated carriers for organic pollutant degradation via in-situ constructing atom-to-atom TiO2/ZrTiO4 heterointerface, Ceram. Int., 47 (23), 33298–33308.

[30] Kurniawan, R., Sudiono, S., Trisunaryanti, W., and Syoufian, A., 2019, Synthesis of iron-doped zirconium titanate as a potential visible-light responsive photocatalyst, Indones. J. Chem., 19 (2), 454–460.

[31] Andita, K.R., Kurniawan, R., and Syoufian, A., 2019, Synthesis and characterization of Cu-doped zirconium titanate as a potential visible-light responsive photocatalyst, Indones. J. Chem., 19 (3), 761–766.

[32] Alifi, A., Kurniawan, R., and Syoufian, A., 2020, Zinc-doped titania embedded on the surface of zirconia: A potential visible-responsive photocatalyst material, Indones. J. Chem., 20 (6), 1374–1381.

[33] Sulaikhah, E.F., Kurniawan, R., Pradipta, M.F., Trisunaryanti, W., and Syoufian, A., 2020, Cobalt doping on zirconium titanate as a potential photocatalyst with visible-light-response, Indones. J. Chem., 20 (4), 911–918.

[34] Lee, H.U., Lee, S.C., Choi, S., Son, B., Lee, S.M., Kim, H.J., and Lee, J., 2013, Efficient visible-light induced photocatalysis on nanoporous nitrogen-doped titanium dioxide catalysts, Chem. Eng. J., 228, 756–764.

[35] Wang, Q., Jin, R., Zhang, M., and Gao, S., 2017, Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance, J. Alloys Compd., 690, 139–144.

[36] Suwannaruang, T., Hildebrand, J.P., Taffa, D.H., Wark, M., Kamonsuangkasem, K., Chirawatkul, P., and Wantala, K., 2020, Visible light-induced degradation of antibiotic ciprofloxacin over Fe–N–TiO2 mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture, J. Photochem. Photobiol., A, 391, 112371.

[37] Suwannaruang, T., Kidkhunthod, P., Chanlek, N., Soontaranon, S., and Wantala, K., 2019, High anatase purity of nitrogen-doped TiO2 nanorice particles for the photocatalytic treatment activity of pharmaceutical wastewater, Appl. Surf. Sci., 478, 1–14.

[38] Realpe Jimenez, A., Nuñez, D., Rojas, N., Ramirez, Y., and Acevedo, M., 2021, Effect of Fe–N codoping on the optical properties of TiO2 for use in photoelectrolysis of water, ACS Omega, 6 (7), 4932–4938.

[39] Arafati, A., Borhani, E., Nourbakhsh, S.M.S., and Abdoos, H., 2019, Synthesis and characterization of tetragonal/monoclinic mixed phases nanozirconia powders, Ceram. Int., 45 (10), 12975–12982.

[40] Di, K., Zhu, Y., Yang, X., and Li, C., 2006, Electrorheological behavior of urea-doped mesoporous TiO2 suspensions, Colloids Surf., A, 280 (1-3), 71–75.

[41] Neppolian, B., Wang, Q., Yamashita, H., and Choi, H., 2007, Synthesis and characterization of ZrO2-TiO2 binary oxide semiconductor nanoparticles: Application and interparticle electron transfer process, Appl. Catal., A, 333 (2), 264–271.

[42] Nolan, N.T., Synnott, D.W., Seery, M.K., Hinder, S.J., Van Wassenhoven, A., and Pillai, S.C., 2012, Effect of N-doping on the photocatalytic activity of sol–gel TiO2, J. Hazard. Mater., 211-212, 88–94.

[43] Li, Z., Wang, X., Jia, L., and Chi, B., 2014, Synergistic effect in Fe/N co-doped anatase TiO2 (101) surface and the adsorption of di-, tri- and polyatomic gases: A DFT investigation, J. Mol. Struct., 1061, 160–165.

[44] Jaiswal, R., Bharambe, J., Patel, N., Dashora, A., Kothari, D.C., and Miotello, A., 2015, Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity, Appl. Catal., B, 168-169, 333–341.


Article Metrics

Abstract views : 1100 | views : 642

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.