Silicon Carbide/Polysilazane Composite: Effect of Temperature on the Densification, Phase, and Microstructure Evolution

Fiqhi Fauzi(1), Alfian Noviyanto(2*), Pipit Fitriani(3), Amirudin Wibowo(4), Toto Sudiro(5), Didik Aryanto(6), Nurul Taufiqu Rochman(7)

(1) Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
(2) Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten 15314, Indonesia Department of Mechanical Engineering, Mercu Buana University, Jl. Meruya Selatan, Kebun Jeruk, Jakarta 11650, Indonesia
(3) Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
(4) Research Center, Mercu Buana University, Jl. Meruya Selatan, Kebun Jeruk, Jakarta 11650, Indonesia
(5) Research Center for Physics, National Research and Innovation Agency, PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
(6) Research Center for Physics, National Research and Innovation Agency, PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
(7) Research Center for Metallurgy and Materials, National Research and Innovation Agency, PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
(*) Corresponding Author


This paper reports a route to suppress the grain growth in silicon carbide (SiC) during its sintering by combining it with polysilazane (PSZ). SiC was mixed with PSZ in a 1:1 weight ratio and sintered at 1600, 1700, and 1800 °C in a hot-pressing furnace. A satisfactory density was obtained at sintering temperatures > 1600 °C. The grain sizes of the SiC/PSZ composites sintered at 1700 and 1800 °C were 112 and 125 nm, respectively. The grain shape of the SiC/PSZ composite sintered at 1700 °C was circular and mainly similar to the initial shape of the SiC powder. Grain shape accommodation was observed at a sintering temperature of 1800 °C. It is suggested that different sample shapes were affected by different liquid phase formations. Silicon oxynitride (Si2N2O) was formed and played an important role in densification and microstructure generation.


silicon carbide; polysilazane; sintering; microstructure

Full Text:

Full Text PDF


[1] Malik, R., and Kim, Y.W., 2021, Pressureless solid-state sintering of SiC ceramics with BN and C additives, J. Asian Ceram. Soc., 9 (3), 1165–1172.

[2] Grasso, S., Saunders, T., Porwal, H., and Reece, M., 2015, Ultra-high temperature spark plasma sintering of α-SiC, Ceram. Int., 41 (1), 225–230.

[3] Kultayeva, S., Kim, Y.W., and Song, I.H., 2021, Effects of dopants on electrical, thermal, and mechanical properties of porous SiC ceramics, J. Eur. Ceram. Soc., 41 (7), 4006–4015.

[4] Petrus, M., Wozniak, J., Jastrzębska, A., Kostecki, M., Cygan, T., and Olszyna, A., 2018, The effect of the morphology of carbon used as a sintering aid on the sinterability of silicon carbide, Ceram. Int., 44 (6), 7020–7025.

[5] Aygüzer Yaşar, Z., DeLucca, V.A., and Haber, R.A., 2021, Effect of boron carbide additive and sintering temperature - Dwelling time on silicon carbide properties, Ceram. Int., 47 (5), 7177–7182.

[6] Liu, M., Yang, Y., Wei, Y., Li, Y., Zhang, H., Liu, X., and Huang, Z., 2019, Preparation of dense and high-purity SiC ceramics by pressureless solid-state-sintering, Ceram. Int., 45 (16), 19771–19776.

[7] Gross, E., Dahan, D.B., and Kaplan, W.D., 2015, The role of carbon and SiO2 in solid-state sintering of SiC, J. Eur. Ceram. Soc., 35 (7), 2001–2005.

[8] Li, Y., Wu, H., Liu, X., Huang, Z., and Jiang, D., 2019, Microstructures and properties of solid-state-sintered silicon carbide membrane supports, Ceram. Int., 45 (16), 19888–19894.

[9] Jana, D.C., Sundararajan, G., and Chattopadhyay, K., 2018, Effective activation energy for the solid-state sintering of silicon carbide ceramics, Metall. Mater. Trans. A, 49 (11), 5599–5606.

[10] Wu, H., Yan, Y., Liu, G., Liu, X., Zhu, Y., Huang, Z., Jiang, D., and Li, Y., 2015, Effects of grain grading on microstructures and mechanical behaviors of pressureless solid-state-sintered SiC, Int. J. Appl. Ceram. Technol., 12 (5), 976–984.

[11] Malinge, A., Coupé, A., Le Petitcorps, Y., and Pailler, R., 2012, Pressureless sintering of beta silicon carbide nanoparticles, J. Eur. Ceram. Soc., 32 (16), 4393–4400.

[12] Malinge, A., Coupé, A., Jouannigot, S., Le Petitcorps, Y., Pailler, R., and Weisbecker, P., 2012, Pressureless sintered silicon carbide tailored with aluminium nitride sintering agent, J. Eur. Ceram. Soc., 32 (16), 4419–4426.

[13] Zapata-Solvas, E., Bonilla, S., Wilshaw, P.R., and Todd, R.I., 2013, Preliminary investigation of flash sintering of SiC, J. Eur. Ceram. Soc., 33 (13-14), 2811–2816.

[14] Ribeiro, S., Gênova, L.A., Ribeiro, G.C., Oliveira, M.R., and Bressiani, A.H.A., 2016, Effect of heating rate on the shrinkage and microstructure of liquid phase sintered SiC ceramics, Ceram. Int., 42 (15), 17398–17404.

[15] Noviyanto, A., and Yoon, D.H., 2013, Rare-earth oxide additives for the sintering of silicon carbide, Diamond Relat. Mater., 38, 124–130.

[16] Noviyanto, A., and Yoon, D.H., 2013, Metal oxide additives for the sintering of silicon carbide: Reactivity and densification, Curr. Appl Phys., 13 (1), 287–292.

[17] Liang, H., Yao, X., Zhang, J., Liu, X., and Huang, Z., 2014, Low temperature pressureless sintering of α-SiC with Al2O3 and CeO2 as additives, J. Eur. Ceram. Soc., 34 (3), 831–835.

[18] Liang, H., Yao, X., Zhang, J., Liu, X., and Huang, Z., 2014, The effect of rare earth oxides on the pressureless liquid phase sintering of α-SiC, J. Eur. Ceram. Soc., 34 (12), 2865–2874.

[19] Candelario, V.M., Moreno, R., Shen, Z., Guiberteau, F., and Ortiz, A.L., 2017, Liquid-phase assisted spark-plasma sintering of SiC nanoceramics and their nanocomposites with carbon nanotubes, J. Eur. Ceram. Soc., 37 (5), 1929–1936.

[20] Yang, Z., Li, B., Zhang, P., Chu, M., Bai, B., Tang, H., Zhong, Y., Liu, X., Gao, R., Liu, T., and Huang, H., 2020, Microstructure and thermal physical properties of SiC matrix microencapsulated composites at temperature up to 1900 °C, Ceram. Int., 46 (4), 5159–5167.

[21] Xie, M.L., Luo, D.L., Xian, X. Bin, Leng, B.Y., Chang’an, C., and Lu, W.Y., 2010, Densification of nano-SiC by ultra-high pressure effects of time, temperature and pressure, Fusion Eng. Des., 85 (7-9), 964–968.

[22] Lee, Y.I., Kim, Y.W., Mitomo, M., and Kim, D.Y., 2003, Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering, J. Am. Ceram. Soc., 86 (10), 1803–1805.

[23] Noviyanto, A., Han, S.W., Yu, H.W., and Yoon, D.H., 2013, Rare-earth nitrate additives for the sintering of silicon carbide, J. Eur. Ceram. Soc., 33 (15-16), 2915–2923.

[24] Brahmandam, S., and Raj, R., 2007, Novel composites constituted from hafnia and a polymer-derived ceramic as an interface: Phase for severe ultrahigh temperature applications, J. Am. Ceram. Soc., 90 (10), 3171–3176.

[25] Castellan, E., Shah, S.R., and Raj, R., 2010, Compression creep of alumina containing interfacial silicon, carbon, and nitrogen, derived from a polysilazane precursor, J. Am. Ceram. Soc., 93 (4), 954–958.

[26] Noviyanto, A., Yoon, D.H., Han, Y.H., and Nishimura, T., 2016, Effect of sintering atmosphere on the grain growth and hardness of SiC/polysilazane ceramic composites, Adv. Appl. Ceram., 115 (5), 272–275.

[27] Zambotti, A., Biesuz, M., Campostrini, R., Carturan, S.M., Speranza, G., Ceccato, R., Parrino, F., and Sorarù, G.D., 2021, Synthesis and thermal evolution of polysilazane-derived SiCN(O) aerogels with variable C content stable at 1600 °C, Ceram. Int., 47 (6), 8035–8043.

[28] Mainzer, B., Lin, C., Jemmali, R., Frieß, M., Riedel, R., and Koch, D., 2019, Characterization and application of a novel low viscosity polysilazane for the manufacture of C- and SiC-fiber reinforced SiCN ceramic matrix composites by PIP process, J. Eur. Ceram. Soc., 39 (2-3), 212–221.

[29] Santoro, U., Novitskaya, E., Karandikar, K., Khalifa, H.E., and Graeve, O.A., 2019, Phase stability of SiC/SiC fiber reinforced composites: The effect of processing on the formation of α and β phases, Mater. Lett., 241, 123–127.

[30] Zhang, X.Y., Li, N., Lan, T., Lu, Y.J., Gan, K., Wu, J.M., Huo, W.L., Xu, J., and Yang, J.L., 2017, In-situ reaction synthesis of porous Si2N2O-Si3N4 multiphase ceramics with low dielectric constant via silica poly-hollow microspheres, Ceram. Int., 43 (5), 4235–4240.

[31] Li, D., Li, W., Fasel, C., Shen, J., and Riedel, R., 2014, Sinterability of the oxynitride LaTiO2N with perovskite-type structure, J. Alloys Compd., 586, 567–573.

[32] Gomez, E., Echeberria, J., Iturriza, I., and Castro, F., 2004, Liquid phase sintering of SiC with additions of Y2O3, Al2O3 and SiO2, J. Eur. Ceram. Soc., 24 (9), 2895–2903.

[33] Fan, B., Chen, Y., Wang, Y., Liu, G., Zheng, H., Li, H., and Zhang, R., 2021, Preparation of Si2N2O wave-transparent and thermal insulation materials with Na2CO3 and BN as aids by pressureless sintering, Ceram. Int., 47 (17), 24306–24312.

[34] Jin, H., Jia, D., Yang, Z., and Zhou, Y., 2021, Mechanical and dielectric properties of direct ink writing Si2N2O composites, J. Eur. Ceram. Soc., 41 (4), 2579–2586.

[35] Li, Y., Liu, D., Ge, B., Shi, Z., and Jin, Z., 2018, Fabrication of Si2N2O ceramic with silicon kerf waste as raw material, Ceram. Int., 44 (5), 5581–5586.

[36] Lee, S.J., and Baek, S., 2016, Effect of SiO2 content on the microstructure, mechanical and dielectric properties of Si3N4 ceramics, Ceram. Int., 42 (8), 9921–9925.

[37] Bordia, R.K., Kang, S.J.L., and Olevsky, E.A., 2017, Current understanding and future research directions at the onset of the next century of sintering science and technology, J. Am. Ceram. Soc., 100 (6), 2314–2352.

[38] German, R.M., Farooq, S., and Kipphut, C.M., 1988, Kinetics of liquid sintering, Mater. Sci. Eng., A, 105-106, 215–224.


Article Metrics

Abstract views : 3232 | views : 1931

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.