Sesquiterpenoids from the Stem Bark of Aglaia simplicifolia and Their Cytotoxic Activity against B16-F10 Melanoma Skin Cancer Cell

https://doi.org/10.22146/ijc.68383

Ghina Izdihar(1), Al Arofatus Naini(2), Desi Harneti(3), Rani Maharani(4), Nurlelasari Nurlelasari(5), Tri Mayanti(6), Agus Safari(7), Kindi Farabi(8), Unang Supratman(9*), Mohamad Nurul Azmi(10), Yoshihito Shiono(11)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(7) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(8) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(9) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(10) School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
(11) Department of Bioresources Engineering, Faculty of Agriculture, Yamagata University, Tsuruoka-shi, Yamagata 997-8555, Japan
(*) Corresponding Author

Abstract


Four sesquiterpenoid derivatives, i.e., 4β,10α-dihydroxyaromadendrane (1), caryophyllenol-II (2), senecrassidiol (3), and clovane-2β,9α-diol (4) have been isolated from the stem bark of Aglaia simplicifolia. The chemical structures of compounds 1-4 were determined based on spectroscopic data, including one and two-dimensional NMR and mass spectroscopy. In addition, these sesquiterpenoids 1-4, were also tested for their cytotoxic activity against B16-F10 melanoma skin cancer cell lines through in vitro assay. Among the isolated compounds 1-4, compound 1 showed the highest activity with an IC50 value of 44.8 μg/mL, suggesting the presence of a cyclopropane ring that plays an essential role in cytotoxic activity against B16-F10 melanoma skin cancer cell lines.


Keywords


Aglaia simplicifolia; cytotoxic activity; B16-F10 cell lines; sesquiterpenoid; Meliaceae



References

[1] Çelik, K., Toğar, B., Türkez, H., and Taşpinar, N., 2014, In vitro cytotoxic, genotoxic, and oxidative effect of acyclic sesquiterpene farnesene, Turk. J. Biol., 38, 253–259.

[2] Jaeger, R., and Cuny, E., 2016, Terpenoids with special pharmacological significance: A review, Nat. Prod. Commun., 11 (9), 1373–1390.

[3] Milawati, H., Sukmawati, W., Harneti, D., Maharani, R., Nurlelasari, N., Hidayat, A.T., Darwati, D., Supratman, U., and Shiono, Y., 2020, Cytotoxic sesquiterpenoids from the stem bark of Aglaia harmsiana (Meliaceae), Indones. J. Chem., 20 (6), 1448–1454.

[4] Degenhardt, J., Köllner, T.G., and Gershenzon, J., 2009, Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants, Phytochemistry, 70 (15-16), 1621–1637.

[5] Gong, D.Y., Chen, X.Y., Guo, S.X., Wang, B.C., and Li, B., 2021, Recent advances and new insights in biosynthesis of dendrobine and sesquiterpenes, Appl. Microbiol. Biotechnol., 105 (18), 6597–6606.

[6] Jeena, K., Liju, V., and Kuttan, R., 2013, Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger, Indian J. Physiol. Pharmacol., 57 (1), 51–62.

[7] Ishnava, K.B., Chauhan, J.B., and Barad, M.B., 2013, Anticariogenic and phytochemical evaluation of Eucalyptus globulus Labill., Saudi J. Biol. Sci., 20 (1), 69–74.

[8] Ornano, L., Venditti, A., Ballero, M., Sanna, C., Quassinti, L., Bramucci, M., Lupidi, G., Papa, F., Vittori, S., Maggi, F., and Bianco, A., 2013, Chemopreventive and antioxidant activity of the chamazulene-rich essential oil obtained from Artemisia arborescens L. growing on the Isle of La Maddalena, Sardinia, Italy, Chem. Biodivers., 10 (8), 1464–1474.

[9] Feraz, R.P.C., Cardozo, G.M.B., da Silva T.B., Fontes, J.E.N., Prata, A.P.N., Carvalho, A.A., Moraes, M.O., Pessoa, C., Costa, E.V., and Bezerra, D.P., 2013, Antitumour properties of the leaf essential oil of Xylopia frutescens Aubl. (Annonaceae), Food Chem., 141 (1), 196–200.

[10] Park, K.R., Nam, D., Hun, H.M., Le, S.G., Jang, H.J., Sethi, G., Cho, S.K., and Ahn, K.S., 2011, β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation, Cancer Lett., 312 (2), 178–88

[11] Awouafack, M.D., Tane, P., Kuete, V., and Eloff, J.N., 2013, “Sesquiterpenes from the medicinal plants of Africa” in Medicinal Plant Research in Africa, Eds. Kuete, V., Elsevier, Oxford, 33–103.

[12] Milawati, H., Harneti, D., Maharani, R., Nurlelasari, N., Hidayat, A.T., Azmi, M.N., Shiono, Y., and Supratman, U., 2019, Caryophyllene-type sesquiterpenoids from the stembark of Aglaia harmsiana and their cytotoxic activity against MCF-7 breast cancer cells, Molekul, 14 (2), 126–132.

[13] Harneti, D., and Supratman, U., 2021, Phytochemistry and biological activities of Aglaia species, Phytochemistry, 181, 112540.

[14] Sianturi, J., Purnamasari, M., Darwati, Harneti, D., Mayanti, D., Supratman, U., Awang, K., and Hayashi, H., 2015, New bisamide compounds from the bark of Aglaia eximia (Meliaceae), Phytochem. Lett., 13, 297–301.

[15] Kurniasih, N., Supriadin, A., Harneti, D., Abdulah, R., Mohamad Taib, M.N.A., and Supratman, U., 2021, Ergosterol peroxide and stigmasterol from the stembark of Aglaia simplicifolia (Meliaceae) and their cytotoxic against HeLa cervical cancer cell lines, J. Kim. Valensi, 7 (1), 46–51.

[16] Kurniasih, N., Supriadin, A., Fajar, M., Abdulah, R., Harneti, D., Supratman, U., and Mohamad Taib, M.N.A., 2019, Cytotoxic sesquiterpenoid compound from the stembark of Aglaia simplicifolia (Meliaceae), J. Phys.: Conf. Ser., 1402 (5), 055037.

[17] Camarillo, I.G., Xiao, F., Madhivanan, S., Salameh, T., Nichols, M., Reece, L.M., Leary, J.F., Otto, K.J., Natarajan, A., Ramesh, A., and Sundararajan, R., 2014, "Low and High Voltage Electrochemotherapy for Breast Cancer: An in vitro Model Study" in Electroporation-Based Therapies for Cancer, Eds. Sundararajan, R., Woodhead Publishing, Cambridge, UK, 55–102.

[18] Machana, S., Weerapreeyakul, N., Barusrux, S., Nonpunya, A., Sripanidkulchai, B., and Thitimetharoch, T., 2011, Cytotoxic and apoptotic effect of six herbal plants against the human hepatocarcinoma (HepG2) cell line, Chin. Med., 6 (1), 39.

[19] Moreira, I.C., Lago, J.H., Young, M.C.M., and Roque, N.F., 2003, Antifungal aromadendrane sesquiterpenoids from the leaves of Xylopia brasiliensis, J. Braz. Chem. Soc., 14, 828–831.

[20] Le Bideau, F., Kousara, M., Chen, L., Wei, L., and Dumas, F., 2017, Tricyclic sesquiterpenes from marine origin, Chem. Rev., 117 (9), 6110–6159.

[21] Chang, Y.C., Chiang, C.C., Chang, Y.S., Chen, J.J., Wang, W.H., Fang, L.S., Chung, H.M., Hwang, T.L., and Sung, P.J., 2020, Novel caryophyllane-related sesquiterpenoids with anti-inflammatory activity from Rumphella antipathes (Linnaeus, 1758), Mar. Drugs, 18 (11), 554.

[22] Xu, M., McCanna, D.J., and Sivak, J.G., 2015, Use the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells, J. Pharmacol. Toxicol. Methods, 71, 1–7.



DOI: https://doi.org/10.22146/ijc.68383

Article Metrics

Abstract views : 1321 | views : 826 | views : 566


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.