On the Mechanical and Thermal Properties of Poly(Vinyl Alcohol) – Alginate Composite Yarn Reinforced with Nanocellulose from Oil Palm Empty Fruit Bunches

https://doi.org/10.22146/ijc.67881

Ainul Maghfirah(1), Farah Fahma(2), Nurmalisa Lisdayana(3), Muchammad Yunus(4), Ahmad Kusumaatmaja(5), Grandprix Thomryes Marth Kadja(6*)

(1) Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
(2) Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Gedung Fateta, Jl. Raya Dramaga, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
(3) Department of Agroindustrial Technology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Hui Jati Agung, South Lampung 35365, Indonesia
(4) Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Campus C, Jl. Mulyorejo, Surabaya 60115, Indonesia
(5) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(6) Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(*) Corresponding Author

Abstract


PVA-alginate hydrogel is a promising material for use in biomedical applications due to its desirable characteristics: biocompatible, durable, non-toxic, and low cost. However, the low gel strength of this composite limits its use in biomedical applications. This study aims to develop enhanced mechanical and thermal properties of poly(vinyl alcohol) PVA-alginate composite yarn by adding nanocellulose isolated from the sustainable oil palm empty fruit bunches (OPEFBs). The PVA-alginate composite yarns reinforced with nanocellulose were prepared with various nanocellulose contents (1 wt.%, 2 wt.%, and 5 wt.%). The composite's tensile strength exhibited an increasing trend with the addition of nanocellulose, while the elongation at break showed the opposite trend. Moreover, it was demonstrated that the composite's thermal degradation shifts to higher temperatures with the addition of nanocellulose. The observed activation energies for the thermal degradation calculated using the Coats-Redfern method exhibited a significant increment for the composites reinforced with nanocellulose. These results show that the addition of nanocellulose into the PVA-alginate matrix enhances the chemical and thermal properties of the resulting hydrogel. All these improvements have resulted from more abundant and robust hydrogen bonds generated by the nanocellulose presence.

Keywords


nanocellulose; OPEFBs; PVA-alginate; mechanical stability; thermal stability

Full Text:

Full Text PDF


References

[1] Brad, A., Schaffartzik, A., Pichler, M., and Plank, C., 2015, Contested territorialization and biophysical expansion of oil palm plantations in Indonesia, Geoforum, 64, 100–111.

[2] Gatto, M., Wollni, M., and Qaim, M., 2015, Oil palm boom and land-use dynamics in Indonesia: The role of policies and socioeconomic factors, Land Use Policy, 46, 292–303.

[3] Varkkey, H., Tyson, A., and Choiruzzad, S.A.B., 2018, Palm oil intensification and expansion in Indonesia and Malaysia: Environmental and socio-political factors influencing policy, For. Policy Econ., 92, 148–159.

[4] Kim, S., and Kim, C.H., 2013, Bioethanol production using the sequential acid/alkali-pretreated empty palm fruit bunch fiber, Renewable Energy, 54, 150–155.

[5] Alam, M.Z., Muyibi, S.A., Mansor, M.F., and Wahid, R., 2007, Activated carbons derived from oil palm empty-fruit bunches: Application to environmental problems, J. Environ. Sci., 19 (1), 103–108.

[6] Osman, N.B., Shamsuddin, N., and Uemura, Y., 2016, Activated carbon of oil palm empty fruit bunch (EFB); Core and shaggy, Procedia Eng., 148, 758–764.

[7] Ooi, C.H., Cheah, W.K., Sim, Y.L., Pung, S.Y., and Yeoh, F.Y., 2017, Conversion and characterization of activated carbon fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption, J. Environ. Manage., 197, 199–205.

[8] Loo, W.W., Pang, Y.L., Lim, S., Wong, K.H., Lai, C.W., and Abdullah, A.Z., 2021, Enhancement of photocatalytic degradation of malachite green using iron doped titanium dioxide loaded on oil palm empty fruit bunch-derived activated carbon, Chemosphere, 272, 129588.

[9] Derman, E., Abdulla, R., Marbawi, H., and Sabullah, M.K., 2018, Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia, Renewable Energy, 129, 285–298.

[10] Sudiyani, Y., Styarini, D., Triwahyuni, E., Sudiyarmanto, Sembiring, K.C., Aristiawan, Y., Abimanyu, H., and Han, M.H., 2013, Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot–scale unit, Energy Procedia, 32, 31–38.

[11] Pangsang, N., Rattanapan, U., Thanapimmetha, A., Srinopphakhun, P., Liu, C.G., Zhao, X.Q., Bai, F.W., and Sakdaronnarong, C., 2019, Chemical-free fractionation of palm empty fruit bunch and palm fiber by hot-compressed water technique for ethanol production, Energy Rep., 5, 337–348.

[12] Suhartini, S., Rohma, N.A., Mardawati, E., Kasbawati, Hidayat, N., and Melville, L., 2022, Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review, Renewable Sustainable Energy Rev., 154, 111817.

[13] Lisdayana, N., Fahma, F., Sunarti, T.C., and Iriani, E.S., 2020, Thermoplastic starch-PVA nanocomposite films reinforced with nanocellulose from oil palm empty fruit bunches (OPEFBs): Effect of starch type, J. Nat. Fibers, 17 (7), 1069–1080.

[14] Huang, S., Zhao, Z., Feng, C., Mayes, E., and Yang, J., 2018, Nanocellulose reinforced P(AAm-co-AAc) hydrogels with improved mechanical properties and biocompatibility, Composites, Part A, 112, 395–404.

[15] Fahma, F., Lisdayana, N., Abidin, Z., Noviana, D., Sari, Y.W., Mukti, R.R., Yunus, M., Kusumaatmaja, A., and Kadja, G.T.M., 2019, Nanocellulose-based fibers derived from palm oil by-products and their in vitro biocompatibility analysis, J. Text. Inst., 111 (9), 1354–1363.

[16] Septevani, A.A., Rifathin, A., Sari, A.A., Sampora, Y., Ariani, G.N., Sudiyarmanto, and Sondari, D., 2020, Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation, Carbohydr. Polym., 229, 115433.

[17] Sawar, M.S., Niazi, M.B.K., Jahan, Z., Ahmad, T., and Hussain, A., 2018, Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging, Carbohydr. Polym., 184, 453–464.

[18] Jorfi, M., and Foster, E.J., 2015, Recent advances in nanocellulose for biomedical applications, J. Appl. Polym. Sci., 132 (14), 41719.

[19] Salimi, S., Sotudeh-Gharebagh, R., Zargami, R., Chan, S.Y., and Yuen, K.H., 2019, Production of nanocellulose and its applications in drug delivery: A critical review, ACS Sustainable Chem. Eng., 7 (19), 15800–15827.

[20] Liu, J., Chinga-Carrasco, G., Cheng, F., Xu, W., Willfӧr, S., Syverud, K., and Xu, C., 2016, Hemicellulose-reinforced nanocellulose hydrogels for wound healing application, Cellulose, 23, 3129–3143.

[21] Basu, A., Lindh, J., Ålander, E., Strømme, M., and Ferraz, N., 2017, On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies, Carbohydr. Polym., 174, 299–308.

[22] Savadekar, N.R., and Mhaske, S.T., 2012, Synthesis of nano cellulose fibers and effect on thermoplastics starch based films, Carbohydr. Polym., 89 (1), 146–151.

[23] Cataldi, A., Rigotti, D., Nguyen, V.D.H., and Pegoretti, A., 2018, Polyvinyl alcohol reinforced with crystalline nanocellulose for 3D printing application, Mater. Today Commun., 15, 236–244.

[24] Chen, C., Wang, H., Li, S., Fang, L., and Li, D., 2017, Reinforcement of cellulose nanofibers in polyacrylamide gels, Cellulose, 24 (12), 5487–5493.

[25] Khalil, H.P.S.A., Saurabh, C.K., Adnan, A.S., Nurul Fazita, M.R., Syakir, M.I., Davoudpour, Y., Rafatullah, M., Abdullah, C.K., Haafiz, M.K.M., and Dungani, R., 2016, A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications, Carbohydr. Polym., 150, 216–226.

[26] Abdollahi, M., Alboofetileh, M., Rezaei, M., and Behrooz, R., 2013, Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers, Food Hydrocolloids, 32 (2), 416–424.

[27] Poonguzhali, R., Basha, S.K., and Kumari, V.S., 2017, Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application, Int. J. Biol. Macromol., 105, 111–120.

[28] Mandal, A., and Chakrabarty, D., 2015, Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films, Carbohydr. Polym., 134, 240–250.

[29] Li, W., Wu, Q., Zhao, X., Huang, Z., Cao, J., Li, J., and Liu, S., 2014, Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils, Carbohydr. Polym., 113, 403–410.

[30] Jiang, X., Xiang, N., Zhang, H., Sun, Y., Lin, Z., and Hou, L., 2018, Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity, Carbohydr. Polym., 186, 377–383.

[31] Islam, M.S., and Karim, M.R., 2010, Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method, Colloids Surf., A, 366 (1-3), 135–140.

[32] Fahma, F., Sapoan, M., Lisdayana, N., Iskandar, A., Sunarti, T.C., and Sugiarto, 2021, Release property of red ginger essential oil in silica-nanocellulose composite based sachet, IOP Conf. Ser.: Earth Environ. Sci., 749, 012045.

[33] Zuluaga, R., Putaux, J.L., Restrepo, A., Mondragon, I., and Gañán, P., 2007, Cellulose microfibrils from banana farming residues: Isolation and characterization, Cellulose, 14, 585–592.

[34] Wang, Q., Hu, X., Du, Y., and Kennedy, J.F., 2010, Alginate/starch blend fibers and their properties for drug controlled release, Carbohydr. Polym., 82 (3), 842–847.

[35] French, A.D., and Cintrón, M.S., 2013, Cellulose polymorphy, crystallite size, and the Segal crystallinity index, Cellulose, 20 (1), 583–588.

[36] Zhao, Y., Moser, C., Lindstrӧm, M.E., Henriksson, G., and Li, J., 2017, Cellulose nanofibers from softwood, hardwood, and tunicate: Preparation-structure-film performance interrelation, ACS Appl. Mater. Interfaces, 9 (15), 13508–13519.

[37] Uddin, A.J., Araki, J., and Gotoh, Y, 2011, Toward "strong" green nanocomposites: Polyvinyl alcohol reinforced with extremely oriented cellulose whiskers, Biomacromolecules, 12 (3), 617–624.

[38] Peng, J., Ellingham, T., Sabo, R., Turng, L.S., and Clemons, C.M., 2014, Short cellulose nanofibrils as reinforcement in polyvinyl alcohol fiber, Cellulose, 21 (6), 4287–4298.

[39] Yue, Y., Han, J., Han, G., French, A.D., Qi, Y., and Wu, Q., 2016, Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization, Carbohydr. Polym., 147, 155–164.

[40] Rozenberg, M., Loewenschuss, A., and Marcus, Y., 2000, An empirical correlation between stretching vibration redshift and hydrogen bond length, Phys. Chem. Chem. Phys., 2 (12), 2699–2702.

[41] Joseph, J., and Jemmis, E.D., 2007, Red-, Blue-, or No-shift in hydrogen bond: A unified explained, J. Am. Chem. Soc., 129 (15), 4620–4632.

[42] Li, X., Shu, M., Li, H., Gao, X., Long, S., Hu, T., and Wu, C., 2018, Strong, tough and mechanically self-recoverable poly(vinyl alcohol)/alginate dual-physical double-network hydrogels with large cross-link density contrast, RSC Adv., 8 (30), 16674–16689.

[43] Cho, M.J., and Park, B.D., 2011, Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites, J. Ind. Eng. Chem., 17 (1), 36–40.

[44] El Miri, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhy, A., and El Achaby, M., 2015, Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films, Carbohydr. Polym., 129, 156–167.

[45] Holland, B.J., and Hay, J.N., 2001, The thermal degradation of poly(vinyl alcohol), Polymer, 42 (16), 6775–6783.

[46] Al-Bayaty, S.A., Al-Uqaily, R.A.H., and Jubier, N.J., 2020, Using the Coats-Redfern method during thermogravimetric analysis and differential scanning calorimetry analysis of the thermal stability of epoxy and epoxy/silica nanoparticle nanocomposites, J. Southwest Jiaotong Univ., 55 (4), 1–12.

[47] Cai, J., and Bi, L., 2008, Precision of the Coats and Redfern method for the determination of the activation energy without neglecting the low-temperature end of the temperature integral, Energy Fuels, 22 (4), 2172–2174.

[48] Ge, J., Wang, R.Q., and Liu, L., 2016, Study on the thermal degradation kinetics of the common wooden boards, Procedia Eng., 135, 72–82.

[49] Shukla, S.K., Srivastava, D., and Srivastava, K., 2015, Synthesis, spectral and thermal degradation kinetics of the epoxidized resole resin derived from cardanol, Adv. Polym. Technol., 34 (1), 21469.

[50] Huang, S., Zhou, L., Li, M.C., Wu, Q., and Zhou, D., 2017, Cellulose nanocrystals (CNCs) from corn stalk: Activation energy analysis, Materials, 10 (1), 80.

[51] Wardani, M.K., Kadja, G.T.M., Fajar, A.T.N., Subagjo, Makertihartha, I.G.B.N., Gunawan, M.L., Suendo, V., and Mukti, R.R., 2019, Highly crystalline mesoporous SSZ-13 zeolite obtained via controlled post-synthetic treatment, RSC Adv., 9 (1), 77–86.

[52] Kadja, G.T.M., Suprianti, T.R., Ilmi, M.M., Khalil, M., Mukti, R.R., and Subagjo, 2020, Sequential mechanochemical and recrystallization methods for synthesizing hierarchically porous ZSM-5 zeolites, Microporous Mesoporous Mater., 308, 110550.



DOI: https://doi.org/10.22146/ijc.67881

Article Metrics

Abstract views : 3730 | views : 3054


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.