Adsorption of Toxic Heavy Metal Methylmercury (MeHg) on Germanene in Aqueous Environment: A First-Principles Study

https://doi.org/10.22146/ijc.66902

Muhammad Rifqi Al Fauzan(1), Trias Prima Satya(2), Galih Setyawan(3), Imam Fahrurrozi(4), Fitri Puspasari(5), Juliasih Partini(6), Sholihun Sholihun(7*)

(1) Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Sekip Unit III, Yogyakarta 55281, Indonesia
(2) Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Sekip Unit III, Yogyakarta 55281, Indonesia
(3) Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Sekip Unit III, Yogyakarta 55281, Indonesia
(4) Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Sekip Unit III, Yogyakarta 55281, Indonesia
(5) Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Sekip Unit III, Yogyakarta 55281, Indonesia
(6) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(7) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


We perform first-principles calculations to investigate the adsorption process of methyl mercury (MeHg) on germanene with the presence of water molecules. We calculate the formation energy and density of states to determine the effect of the adsorption of MeHg on the structural and electronic properties of germanene. Our results show that MeHg is chemisorbed on germanene through a spontaneous reaction. The calculated formation energy of the system is -1.61 eV. We also carry out charge distribution and charge transfer calculations based on the Mulliken model to understand the adsorption mechanism of MeHg.

Keywords


methylmercury; germanene; adsorption; formation energy; the density of states

Full Text:

Full Text PDF


References

[1] Liu, G., Cai, Y., O’Driscoll, N., Feng, X., and Jiang, G., 2011, “Overview of Mercury in the Environment” in Environmental Chemistry and Toxicology of Mercury, Eds. Liu, G., Cai, Y., and O’Driscoll, N., Wiley, New Jersey, 1–12.

[2] Fitzgerald, W.F., and Lamborg, C.H., 2007, Geochemistry of Mercury in the Environment, Treatise Geochem., 9, 1–47.

[3] Gasong, B.T., Abrian, S., and Setyabudi, F.M.C.S., 2017, Methylmercury biosorption activity by methylmercury-resistant lactic acid bacteria isolated from West Sekotong, Indonesia, HAYATI J. Biosci., 24 (4), 182–186.

[4] National Research Council, 2000, Toxicological Eects of Methylmercury, National Academy Press, Washington, DC.

[5] Wang, J., Feng, X., Anderson, C.W.N., Xing, Y., and Shang, L., 2012, Remediation of mercury contaminated sites - A review, J. Hazard. Mater., 221-222, 1–18.

[6] Acun, A., Zhang, L., Bampoulis, P., Farmanbar, M., van Houselt, A., Rudenko, A.N., Lingenfelder, M., Brocks, G., Poelsema, B., Katsnelson, M.I., and Zandvliet, H.J.W., 2015, Germanene: The germanium analogue of graphene, J. Phys.: Condens. Matter, 27, 443002.

[7] Dávila, M.E., Xian, L., Cahangirov, S., Rubio, A., and Le Lay, G., 2014, Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 16, 095002.

[8] Li, L., Lu, S.Z., Pan, J., Qin, Z., Wang, Y.Q., Wang, Y., Cao, G.Y., Du, S., and Gao, H.J., 2014, Buckled germanene formation on Pt(111), Adv. Mater., 26 (28), 4820–4824.

[9] Derivaz, M., Dentel, D., Stephan, R., Hanf, M.C., Mehdaoui, A., Sonnet, P., and Pirri, C., 2015, Continuous germanene layer on Al(111), Nano Lett., 15 (4), 2510–2516.

[10] Kaloni, T.P., 2014, Tuning the structural, electronic, and magnetic properties of germanene by the adsorption of 3d transition metal atoms, J. Phys. Chem. C, 118 (43), 25200–25208.

[11] Pang, Q., Zhang, C.L., Li, L., Fu, Z.Q., Wei, X.M., and Song, Y.L., 2014, Adsorption of alkali metal atoms on germanene: A first-principles study, Appl. Surf. Sci., 314, 15–20.

[12] Ye, M., Quhe, R., Zheng, J., Ni, Z., Wang, Y., Yuan, Y., Tse, G., Shi, J., Gao, Z., and Lu, J., 2014, Tunable band gap in germanene by surface adsorption, Physica E, 59, 60–65.

[13] Xia, W., Hu, W., Li, Z., and Yang, J., 2014, A first-principles study of gas adsorption on germanene, Phys. Chem. Chem. Phys., 16 (41), 22495–22498.

[14] Al Fauzan, M.R., Astuti, W.D., Al Fauzan, G., and Sholihun, 2018, The interaction of air pollutant molecules with germanene and silicene: A density functional theory study, Molekul, 13 (1), 92–97.

[15] Liu, G., Liu, S.B., Xu, B., Ouyang, C.Y., and Song, H.Y., 2015, First-principles study of the stability of free-standing germanene in oxygen atmosphere, J. Appl. Phys., 118, 124303.

[16] Ozaki, T., Kino, H., Yu, J., Han, M.J., Ohfuchi, M., Ishii, F., Sawada, K., Kubota, Y., Mizuta, Y.P., Ohwaki, T., Duy, T.V.T., Weng, H., Shiihara, Y., Toyoda, M., Okuno, Y., Perez, R., Bell, P.P., Ellner, M., Xiao, Y., Ito, A.M., Kawamura, M., Yoshimi, K., Lee, C.C., and Terakura, K., 2009, User’s manual of OPENMX v.3.8., http://www.openmxsquare.org.

[17] Ozaki, T., 2003, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B, 67, 155108.

[18] Ozaki, T., and Kino, H., 2004, Numerical atomic basis orbitals from H to Kr, Phys. Rev. B, 69, 195113.

[19] Troullier, N., and Martins, J.L., 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993.

[20] Perdew, J.P., Burke, K., and Ernzerhof, M., 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865.

[21] Zhuravlev, K.K., 2007, PbSe vs. CdSe: Thermodynamic properties and pressure dependence of the band gap, Physica B, 394 (1), 1–7.

[22] Murnaghan, F.D., 1944, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. U.S.A., 30 (9), 244–247.

[23] Birch, F., 1947, Finite elastic strain of cubic crystals, Phys. Rev., 71 (11), 809–824.

[24] Amalia, W., Nurwantoro, P., and Sholihun, 2019, Density-functional-theory calculations of structural and electronic properties of vacancies in monolayer hexagonal boron nitride (h-BN), Comput. Condens. Matter, 18, e00354.

[25] Hastuti, D.P., Nurwantoro, P., and Sholihun, 2019, Stability study of germanene vacancies: The first-principles calculations, Mater. Today Commun., 19, 459–463.

[26] Sholihun, Amalia, W., Hastuti, D.P., Nurwantoro, P., Nugraheni, A.D., and Budhi, R.H.S., 2019, Magic vacancy-numbers in h-BN multivacancies: The first-principles study, Mater. Today Commun., 20, 100591.

[27] Śpiewak, J.P., Vanhellemont, J., and Kurzydlowski, K.J., 2011, Improved calculation of vacancy properties in Ge using the Heyd-Scuseria-Ernzerhof range-separated hybrid functional, J. Appl. Phys., 110, 063534.

[28] Corsetti, F., and Mostofi, A.A., 2011, System-size convergence of point defect properties: The case of the silicon vacancy, Phys. Rev. B, 84, 035209.

[29] Probert, M.I.J., and Payne, M.C., 2003, Improving the convergence of defect calculations in supercells: An ab initio study of the neutral silicon vacancy, Phys. Rev. B, 67, 075204.

[30] Sholihun, Kadarisman, H.P., and Nurwantoro, P., 2018, Density-functional-theory calculations of formation energy of the nitrogen-doped diamond, Indones. J. Chem., 18 (4), 749–754.

[31] Al Fauzan, M.R., Astuti, W.D., Al Fauzan, G., and Sholihun, 2018, A first-principles investigation of the adsorption of CO and NO molecules on germanene, IOP Conf. Ser.: Mater. Sci. Eng., 367, 012051.

[32] Lee, K.W., and Lee, C.E., 2020, Strain and doping effects on the antiferromagnetism of AB-stacked bilayer silicene, Physica B, 577, 411816.

[33] Umam, K., Sholihun, Nurwantoro, P., Absor, M.A.U., Nugraheni, A.D., and Budhi, R.H.S., 2018, Biaxial strain effects on the electronic properties of silicene: The density-functional-theory-based calculations, J. Phys.: Conf. Ser., 1011, 012074.

[34] Scalise, E., Houssa, M., Pourtois, G., van den Broek, B., Afanas’ev, V., and Stesmans, A., 2013, Vibrational properties of silicene and germanene, Nano Res., 6 (1), 19–28.



DOI: https://doi.org/10.22146/ijc.66902

Article Metrics

Abstract views : 2029 | views : 1739


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.