Ground State Energies of Helium-Like Ions Using a Simple Parameter-Free Matrix Method
Redi Kristian Pingak(1*), Atika Ahab(2), Utama Alan Deta(3)
(1) Department of Physics, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, Nusa Tenggara Timur, Indonesia
(2) Department of Physics, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, Nusa Tenggara Timur, Indonesia
(3) Department of Physics, Universitas Negeri Surabaya, Jl. Ketintang Gd C3 Lt 1, Surabaya 60231, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Paterson, D., Chantler, C.T., Hudson, L.T., Serpa, F.F., Gillaspy, J.D., and Takacs, E., 2001, Absolute Test of Quantum Electrodynamics for Helium-Like Vanadium” in The Hydrogen Atom, Lecture Notes in Physics Vol 570, Eds. Karshenboim, S.G., Bassani, F., Pavone, F., Inguscio, M., Hansch, T., (eds.), Springer, Berlin, Heidelberg, 699–713.
[2] Yerokhin, V.A., and Pachucki, K., 2010, Theoretical energies of low-lying states of light helium-like ions, Phys. Rev. A, 81 (2), 022507.
[3] Tupitsyn, I.I., Bezborodov, S.V., Malyshev, A.V., Mironova, D.V., and Shabaev, V.M., 2020, Calculations of relativistic, correlation, nuclear, and quantum-electrodynamics corrections to energy and ionization potential of the ground state of helium-like ions, Opt. Spectrosc., 128 (1), 21–31.
[4] Cioslowski, J., and Prątnicki, F., 2020, Uniform description of the helium isoelectronic series down to the critical nuclear charge with explicitly correlated basis sets derived from regularized Krylov sequences, J. Chem. Phys., 153 (22), 224106.
[5] Cioslowski, J., and Prątnicki, F., 2019, Natural amplitudes of the ground state of the helium atom: Benchmark calculations and their relevance to the issue of unoccupied natural orbitals in the H2 molecule, J. Chem. Phys., 150 (7), 074111.
[6] Cioslowski, J., and Prątnicki, F., 2018, Simpler is often better: Computational efficiency of explicitly correlated two-electron basis sets generated by the regularized Krylov sequences of Nakatsuji, J. Chem. Phys., 149 (18), 184107.
[7] Stoyanov, Z.K., Pavlov, R., Mihailov, L.M., Velchev, Ch.J., Mutafchieva, Y.D., Tonev, D., and Chamel, N., 2016, Nuclear induces effects and mass correlations in low and multiply charged helium-like ions, J. Phys. Conf. Ser., 724, 012048.
[8] Velchev, C.J., Pavlov, R., Tonev, D., Stoyanov, Z.K., Mihailov, L.M., Mutafchieva, Y.D., and Van Neck, D., 2017, “Effects of Isotope Characteristics on the Electron System Ground State Energy Of Helium-Like Ions” in Quantum Systems in Physics, Chemistry, and Biology. Progress in Theoretical Chemistry and Physics Vol 30, Eds. Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G., Springer, Cham, 283–300.
[9] Nakashima, H., and Nakatsuji, H., 2007, Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method, J. Chem. Phys., 127 (22), 224104.
[10] Nakashima, H., and Nakatsuji, H., 2008, Solving the electron-nuclear Schrödinger equation of helium atom and its isoelectronic ions with the free-iterative-complement interaction method, J. Chem. Phys., 128 (15), 154107.
[11] Turbiner, A.V., Vieyra, J.C.L., and Olivares-Pilòn, H., 2019, Few-electron atomic ions in non-relativistic QED: The ground state, Ann. Phys., 409, 167908.
[12] Turbiner, A.V., Vieyra, J.C.L., del Valle, J.C., and Nader, D.J., 2020, Ultra-compact accurate wave functions for He-like and Li-like iso-electronic sequences and variational calculus: I. Ground state, Int. J. Quantum Chem., 121 (8), e26586.
[13] Pekeris, C.L., 1958, Ground states of two-electron atoms, Phys. Rev., 112 (5), 1649–1658.
[14] Rodriguez, K.V., Gasaneo, G., and Mitnik, D.M., 2007, Accurate and simple wavefunctions for the helium isoelectronic sequence with correct cusp conditions, J. Phys. B: At., Mol. Opt. Phys., 40 (19), 3923–3939.
[15] Liverts, E.Z., and Barnea, N., 2011, S-States of helium-like ions, Comput. Phys. Commun., 182 (9), 1790–1795.
[16] Ancarani, L.U., Rodriguez, K.V., and Gasaneo, G., 2007, A simple parameter-free wavefunction for the ground state of two-electron atoms, J. Phys. B: At. Mol. Opt. Phys., 40 (13), 2695–2702.
[17] Utomo, Y.R., Maruto, G., Utomo, A.B.S., Nurwantoro, P., and Sholihun, S., 2020, Numerical calculation of energy eigen-values of the hydrogen negative ion in the 2p2 configuration by using the variational method, J. Fis. Indones., 24 (1), 30–32.
[18] Gomez, R.W., 1992, Ground and excited energy levels of helium-like atoms using a simple geometrical model, Eur. J. Phys., 13 (3), 135–138.
[19] Bransden, B.H., and Joachain, C.J., 2000, Quantum Mechanics, 2nd Ed., Prentice Hall, Hoboken, US.
[20] Massé, R., and Walker, T.G., 2015, Accurate energies of the He atom with undergraduate quantum mechanics, Am. J. Phys., 83 (8), 730–732.
[21] Pingak, R.K., Kolmate, R., and Bernandus., 2019, A simple matrix approach to determination of the helium atom energies, JPFA, 9 (1), 10–21.
[22] Pingak, R.K., and Deta, U.A., 2020, A simple numerical matrix method for accurate triplet-1s2s 3S1 energy levels of some light helium-like ions, J. Phys. Conf. Ser., 1491, 012035.
[23] Harbola, V., 2011, Using uncertainty principle to find the ground-state energy of the helium and a helium-like Hookean atom, Eur. J. Phys., 32 (6), 1607–1615.
[24] Tapilin, V.M., 2019, Solving the Schrodinger equation for helium-like ions with the method of configuration weight functions, J. Struct. Chem., 60 (1), 1–6.
[25] King, A.W., Baskerville, A.L., and Cox, H., 2018, Hartree-Fock implementation using a Laguerre-based wave function for the ground state and correlation energies of two-electron atoms, Philos. Trans. R. Soc., A, 376 (2115), 20170153.
[26] Aznabaev, D.T., Bekbaev, A.K., Ishmukhamedov, I.S., and Korobov, V.I., 2015, Energy levels of a helium atom, Phys. Part. Nucl. Lett., 12 (5), 689–694.
[27] Chen, Y.H., and Chao, S.D., 2017, Kinetic energy partition method applied to ground state helium-like atoms, J. Chem. Phys., 146 (12), 124120.
[28] Aznabaev, D.T., Bekbaev, A.K., and Korobov, V.I., 2018, Nonrelativistic energy levels of helium atoms, Phys. Rev. A, 98, 012510.
[29] Yerokhin, V.A., Patkóš, V., Puchalski, M., and Pachucki, K., 2020, QED calculation of ionization energies of 1snd states in helium, Phys. Rev. A, 102, 012807.
[30] Rahman, F.U., Sarwono, Y.P., and Zhang, R.Q., 2021, Solution of two-electron Schrodinger equations using a residual minimization method and one-dimensional basis functions, AIP Adv., 11 (2), 025228.
[31] Hutchinson, J., Baker, M., and Marsiglio, F., 2013, The spectral decomposition of the helium atom two-electron configuration in terms of hydrogenic orbitals, Eur. J. Phys., 34, 111–128.
[32] Di Rocco, H.O., 2013, Comment on ‘The spectral decomposition of the helium atom two-electron configuration in terms of hydrogenic orbitals’, Eur. J. Phys., 34 (2), L43.
[33] Forestell, L., and Marsiglio, F., 2015, The importance of basis states: an example using the hydrogen basis, Can. J. Phys., 93 (10), 1009–1014.
[34] Tapilin, V.M., 2019, A new method of solving the many-body Schrodinger equation, J. Struct. Chem., 58, 1–8.
[35] Baskerville, A.L., King, A.W., and Cox, H., 2019, Electron correlation in Li+, He, H– and the critical nuclear charge system ZC: Energies, densities and Coulumb holes, R. Soc. Open Sci., 6 (1), 181357.
[36] Purwaningsih, S., Nurwantoro, P., and Hermanto, A., 2019, Calculation of ground state energy of helium using Hylleraas trial function expansion, Int. J. Eng. Res. Sci. Technol., 12 (8), 1178–1182.
[37] Hall, S., and Siegel, P.B., 2015, Calculating helium atomic excited states in coordinate space, Am. J. Phys., 83 (12), 1028–1038.
[38] Gueribah, S., Ighezou, E.Z., Lombard, R.J., and Ngo, H., 2011, The Heisenberg model of the He atom revisited, Few-Body Syst., 51, 59–67.
[39] Herschbach, D.R., Loeser, J.G., and Virgo, W.L., 2017, Exploring unorthodox dimensions for two-electron atoms, J. Phys. Chem. A, 121 (33), 6336–6340.
[40] Rahman, F.U., Zhao, R., Sarwono, Y.P., and Zhang, R.Q., 2018, A scheme of numerical solution for three-dimensional isoelectronic series of hydrogen atom using one-dimensional basis functions, Int. J. Quantum Chem., 118 (19), e25694.
[41] Le Vot, F., Meléndez, J.J., and Yuste, S.B., 2016, Numerical matrix method for quantum periodic potentials, Am. J. Phys., 84 (6), 426–433.
[42] Pavelich, R.L., and Marsiglio, F., 2015, The Kronig-Penney model extended to arbitrary potentials via numerical matrix mechanics, Am. J. Phys., 83 (9), 773–781.
[43] Jugdutt, B.A., and Marsiglio, F., 2013, Solving for three-dimensional central potentials using numerical matrix methods, Am. J. Phys., 81 (5), 343–350.
DOI: https://doi.org/10.22146/ijc.65737
Article Metrics
Abstract views : 3814 | views : 3051Copyright (c) 2021 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.