Synthesis of Symmetrical Acetophenone Azine Derivatives as Colorimetric and Fluorescent Cyanide Chemosensors
Nur Masyittah Irmi(1), Bambang Purwono(2*), Chairil Anwar(3)
(1) Department of Chemistry, Faculty Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara, PO BOX BLS 21, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara, PO BOX BLS 21, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara, PO BOX BLS 21, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Pei, P.X., Hu, J.H., Chen, Y., Sun, Y., and Qi, J., 2017, A novel dual-channel chemosensor for CN− using asymmetric double-azine derivatives in aqueous media and its application in bitter almond, Spectrochim. Acta, Part A, 181, 131–136.
[2] Jia, X., Yang, Y., He, Y., Ma, Q., and Liu, Y., 2019, Theoretical study on the sensing mechanism of a fluorescence chemosensor for the cyanide anion, Spectrochim. Acta, Part A, 216, 258–264.
[3] Erdemir, S., and Malkondu, S., 2020, On-site and low-cost detection of cyanide by simple colorimetric and fluorogenic sensors: Smartphone and test strip applications, Talanta, 207, 120278.
[4] Ferreira, N.L, de Cordova, L.M., Schramm, A.D.S., Nicoleti, C.R., and Machado, V.G., 2019, Chromogenic and fluorogenic chemodosimeter derived from Meldrum's acid detects cyanide and sulfide in aqueous medium, J. Mol. Liq., 282, 142–153.
[5] Yu, B., Li, C.Y., Sun, Y.X., Jia, H.R., Guo, J.Q., and Li, J., 2017, A new azine derivative colorimetric and fluorescent dual-channel probe for cyanide detection, Spectrochim. Acta, Part A, 184, 249–254.
[6] Udhayakumari, D., 2018, Chromogenic and fluorogenic chemosensors for lethal cyanide ion. A comprehensive review of the year 2016, Sens. Actuators, B, 259, 1022–1057.
[7] Tracqui, A., Raul, J.S., Géraut, A., Berthelon, L., and Ludes, B., 2002, Determination of blood cyanide by HPLC-MS, J. Anal. Toxicol., 26 (3), 144–148.
[8] Dadfarnia, S., Haji Shabani, A.M., Tamadon, F., and Rezaei, M., 2007, Indirect determination of free cyanide in water and industrial waste water by flow injection-atomic absorption spectrometry, Microchim. Acta, 158 (1), 159–163.
[9] Taheri, A., Noroozifar, M., and Khorasani, M.M., 2009, Investigation of a new electrochemical cyanide sensor based on Ag nanoparticles embedded in a three dimensional solegel, J. Electroanal. Chem., 628 (1-2), 48–54.
[10] Mergu, N., Singh, A.K., and Gupta, V.K., 2015, Highly sensitive and selective colorimetric and off-on fluorescent reversible chemosensors for Al3+ based on the rhodamine fluorophore, Sensors, 15 (4), 9097–9111.
[11] Sun, Y., Hu, J.H., Qi, J., and Li, J.B., 2016, A highly selective colorimetric and "turn-on" fluorimetric chemosensor for detecting CN− based on unsymmetrical azine derivatives in aqueous media, Spectrochim. Acta, Part A, 167, 101–105.
[12] Pei, P.X., Hu, J.H., Long, C., and Ni. P.W., 2018, A novel colorimetric and "turn-on" fluorimetric chemosensor for selective recognition of CN– ions based on asymmetric azine derivatives in aqueous media, Spectrochim. Acta, Part A, 198, 182–187.
[13] Hu, J.H., Sun, Y., Qi, J., Li, Q., and Wei, T.B., 2017, A new unsymmetrical azine derivative based on coumarin group as dual-modal sensor for CN– and fluorescent "OFF-ON" for Zn2+, Spectrochim. Acta, Part A, 175, 125–133.
[14] Hidayah, N., Purwono, B., and Pranowo, H.D., 2020, One step synthesis of symmetrical amino azine derivatives using hydrazine hydrate as a reagent, Key Eng. Mater., 840, 257–264.
[15] Kagatikar, S., Sunil, D., Kekuda, D., Kulkarni, S.D., and Abdul Salam, A.A., 2020, New salicylaldehyde azine esters: Structural, aggregation induced fluorescence, electrochemical and theoretical studies, J. Mol. Liq., 318, 114029.
[16] Lee, B., Lee, K.H., Cho, J., Nam, W., and Hur, N.H., 2011, Synthesis of azines in solid state: Reactivity of solid hydrazine with aldehydes and ketones, Org. Lett., 13 (24), 6386–6389.
[17] Safari, J., and Gandomi-Ravandi, S., 2011, Highly efficient practical procedure for the synthesis of azine derivatives under solvent-free conditions, Synth. Commun., 41 (5), 645–651.
[18] Li, W.J., and Han, H.F., 2016, Crystal structure of (E,E)-2’,4’-dihydroxyacetophenone azine dimethylformamide disolvate, Acta Crystallogr., Sect. E: Crystallogr. Commun., E72, 467–469.
[19] Mohammadi, A., and Yaghoubi, S., 2017, A new dual colorimetric chemosensor based on quinazolinone for CN–, AcO– and Cu2+ ions, Sens. Actuators, B, 241, 1069–1075.
[20] Nie, H.M., Gong, C.B., Tang, Q., Ma, X.B., and Chow, C.F., 2014, Visual and reversible detection of cyanide ions in protic solvents by a novel colorimetric receptor, Dyes Pigm., 106, 74–80.
[21] Lin, S.L., Kuo, P.Y., and Yang, D.Y., 2007, Design and synthesis of a coumarin-based acidichromic colorant, Molecules, 12 (7), 1316–1324.
[22] Purwono, B., Anwar, C., and Hanapi, A., 2013, Syntheses of azo-imine derivatives from vanillin as an acid base indicator, Indones. J. Chem., 13 (1), 1–6.
[23] Murugesan, K., Jeyasingh, V., Lakshminarayan, S., Selvapalam, N., Dass, G., and Piramuthu, L., 2021, Anion-binding-induced and reduced fluorescence emission (ABIFE & ABRFE): A fluorescent chemo sensor for selective turn-on/off detection of cyanide and fluoride, Spectrochim. Acta, Part A, 245, 118943.
DOI: https://doi.org/10.22146/ijc.64428
Article Metrics
Abstract views : 3967 | views : 3448Copyright (c) 2021 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.