The Impact of 242Pu Speciation on the Bioaccumulation of Plutonium by Babylonia spirata from Jakarta Bay

https://doi.org/10.22146/ijc.63502

Budiawan Budiawan(1*), Mariska Winda Asrini(2), Wahyu Retno Prihatiningsih(3), Heny Suseno(4)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
(3) Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, South Jakarta 12440, Indonesia
(4) Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, South Jakarta 12440, Indonesia
(*) Corresponding Author

Abstract


The research of bioaccumulation Plutonium of Babylonia spirata from Jakarta Bay using 242Pu radiotracer has been conducted. The aquaria experiments were applied by two oxidation states of Pu speciation with three replications. The experiment was carried out by 2 steps, such as uptake and depuration. The bioavailability of 242Pu in the (III) and (IV) oxidation states from sea has been studied for Babylonia spirata. Biokinetics parameters, such as concentration factors (CFss), uptake rate constants (ku), elimination rate constants (ke), bioconcentration factors (BCF), and biological half-life (tb1/2), were investigated. The dissection is carried out to separate the parts of the gastropod's body so that the target organs for Plutonium contamination can be identified. Each part of the gastropod's body was prepared radiochemically and analyzed using an alpha spectrometer. The research shows that Pu4+ is potentially accumulated in greater value than Pu3+ by B. spirata, in which Pu is more rapidly distributed and retained longer in proboscis and gastrointestinal tract.


Keywords


Babylonia spirata; bioaccumulation; Jakarta Bay; Plutonium; speciation

Full Text:

Full Text PDF


References

[1] Strumińska-Parulska, D.I., and Skwarzec, B., 2015, Characterization of 241Pu occurrence, distribution, and bioaccumulation in seabirds from northern Eurasia, Environ. Sci. Pollut. Res., 22 (10), 7821–7832.

[2] Hain, K., Faesterman, T., Fimiani, L., Golser, R., Gómez-Guzmán, J.M., Korschinek, G., Kortmann, F., Lierse von Gostomski, C., Ludwig, P., Steier, P., Tazoe, H., and Yamada, M. 2017, Plutonium isotopes (239-241Pu) dissolved in Pacific Ocean waters detected by accelerator mass spectrometry: No effects of the Fukushima accident observed, Environ. Sci. Technol., 51 (4), 2031–2037.

[3] Clement, C., 2020, Annals of the ICRP Vienna, Austria, https://www.icrp.org/docs/TG64 Draft Report for Public Consultation 2020-02-27.pdf.

[4] Uddin, S., Aba, A., Fowler, S.W.W., Behbehani, M., Ismaeel, A., Al-Shammari, H., Alboloushi, A., Mietelski, J.W., Al-Ghadban, A., Al-Ghunaim, A., Khabbaz, A., and Alboloushi, O., 2015, Radioactivity in the Kuwait marine environment – Baseline measurements and review, Mar. Pollut. Bull., 100 (2), 651–661.

[5] Ansoborlo, E., and Adam-Guillermin, C., 2012, "Radionuclide Transfer Processes in the Biosphere" in Radionuclide Behaviour in the Natural Environment, Eds. Poinssot, C., and Geckeis, H., Woodhead Publishing, UK, 484–513.

[6] Hamada, N., and Ogino, H., 2012, Food safety regulations: What we learned from the Fukushima nuclear accident, J. Environ. Radioact., 111, 83–99.

[7] Periyasamy, N., Srinivasan, M., Devanathan, K., and Balakrishnan, S., 2011, Nutritional value of gastropod Babylonia spirata (Linnaeus, 1758) from Thazhanguda, Southeast coast of India, Asian Pac. J. Trop. Biomed., 1 (2, Suppl.), S249–S252.

[8] Rachmawati, D., Samidjan, I., and Susilowati, T., 2017, Pemanfaatan pakan ikan juwi (Anadontostoma chucunda) oleh keong macan (Babilonia spirata L.) pada media budidaya dengan salinitas yang berbeda, PENA Akuatika, 16 (1), 58–70.

[9] Prihatiningsih, W.R., Suseno, H., Zamani, N.P., and Soedharma, D., 2016, Bioaccumulation and retention kinetics of cesium in the milkfish Chanos chanos from Jakarta Bay, Mar. Pollut. Bull., 110 (2), 647–653.

[10] Baramanda, T.A., Budiawan, Bakri, R., and Suseno, H., 2020, Cs-137 radionuclide bioaccumulation study in gold fish (Cyprinus carpio) through freshwater path with variations of potassium ion concentration (K+), IOP Conf. Ser.: Mater. Sci. Eng., 902, 012056.

[11] Suseno, H., Hudiyono, S., Muslim, M., 2016, Elimination of chloramphenicol by tiger shrimp (Penaeus monodon) and White Shrimp (Litopenaeus vannamei), HAYATI J. Biosci., 23 (3), 117–120.

[12] Budiawan, Bakri, R., Aziz, S.A., and Suseno, H., 2020, Study of bioaccumulation and heavy metal depuration of cadmium in green mussel (Perna viridis), IOP Conf. Ser.: Mater. Sci. Eng., 902, 012057.

[13] Budiawan, B., Febriana, N.H., and Suseno, H., 2019, Kemampuan kerang hijau (Perna viridis) mengakumulasi plutonium melalui jalur air laut, J. Kim. Valensi, 5 (1), 63–71.

[14] Johansen, M.P., Child, D.P., Caffrey, E.A., Davis, E., Harrison, J.J., Hotchkis, M.A.C., Payne, T.E., Ikeda-Ohno, A., Thiruvoth, S., Twining, J.R., and Beresford, N.A., 2016, Accumulation of plutonium in mammalian wildlife tissues following dispersal by accidental-release tests, J. Environ. Radioact., 151, 387–394.

[15] Suseno, H., Budiawan, Muslim, Makmur, M., and Yahya, M.N., 2017, Present status of marine radioecology in Jakarta Bay, At. Indones., 44 (2), 63–67.

[16] Suseno, H., 2014, Bioaccumulation factor of 137Cs in some marine biotas from West Bangka Indonesia, AIP Conf. Proc., 1589, 342.

[17] Saleh, H.M., Bayoumi, T.A., Mahmoud, H.H., and Aglan, R.F., 2017, Uptake of cesium and cobalt radionuclides from simulated radioactive wastewater by Ludwigia stolonifera aquatic plant, Nucl. Eng. Des., 315, 194–199.

[18] Metian, M., Pouil, S., Hedouin, L., Oberhänsli, F., Teyssié, J.L., Bustamante, P., and Warnau, M., 2016, Differential bioaccumulation of 134Cs in tropical marine organisms and the relative importance of exposure pathways, J. Environ. Radioact., 152, 127–135.

[19] IAEA, 2016, Interlaboratory Comparisons 2014–2016: Determination of Radionuclides in Sea Water, Sediment and Fish, IAEA/AQ/59, International Atomic Energy Agency, Vienna, Austria.

[20] Wassenaar, P.N.H., Verbruggen, E.M.J., Cieraad, E., Peijnenburg, W.J.G.M., and Vijver, M.G., 2020, Variability in fish bioconcentration factors: Influences of study design and consequences for regulation, Chemosphere, 239, 124731.

[21] NNDC, 2016, Interactive Chart of Nuclides, National Nuclear Data Center, Brookhaven National Laboratory, Upton, US, https://www.nndc.bnl.gov/nudat2/.

[22] Choppin, G., Liljenzin, J.O., Rydberg, J., and Ekberg, C., 2013, "Behavior of Radionuclides in the Environment" in Radiochemistry and Nuclear Chemistry, 4th Ed., Academic Press, Oxford, UK, 753–788.

[23] Armstrong, C.R., Brant, H.A., Nuessle, P.R., Hall, G., and Cadieux, J.R., 2016, Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope, Sci. Rep., 6 (1), 21512.

[24] Sakaguchi, A., Kadokura, A., Steier, P., Tanaka, K., Takahashi, Y., Chiga, H., Matsushima, A., Nakashima, S., and Onda, Y., 2012, Isotopic determination of U, Pu and Cs in environmental waters following the Fukushima Daiichi nuclear power plant accident, Geochem. J., 46 (4), 355–360.

[25] Skipperud, L., Oughton, D., and Salbu, B., 2000, The impact of Pu speciation on distribution coefficients in Mayak soil, Sci. Total Environ., 257 (2), 81–93.

[26] Periáñez, R., Bezhenar, R., Brovchenko, I., Duffa, C., Iosjpe, M., Jung, K.T., Kobayashi, T., Lamego, F., Maderich, V., Min, B.I., Nies, H., Osvath, I., Outola, I., Psaltaki, M., Suh, K.S., de With, G., 2016, Modelling of marine radionuclide dispersion in IAEA MODARIA program: Lessons learnt from the Baltic Sea and Fukushima scenarios, Sci. Total Environ., 569-570, 594–602.

[27] Cantrell, K.J., and Felmy, A.R., 2012, Plutonium and Americium Geochemistry at Hanford: A Site-Wide Review, PNNL-21651, Pacific Northwest National Laboratory, Richland, Washington.

[28] Becker, J.S., Zoriy, M., Halicz, L., Teplyakov, N., Müller, Chr., Segal, I., Pickhardt, C., and Platzner, I.T., 2004, Environmental monitoring of plutonium at ultratrace level in natural water (Sea of Galilee-Israel) by ICP-SFMS and MC-ICP-MS, J. Anal. At. Spectrom., 19 (9), 1257–1261.

[29] Akhyar, O., 2013, Preparasi dan analisis plutonium trace level pada air laut menggunakan α-spektrometer, Jurnal Teknologi Pengelolaan Limbah, 16 (3), 81–86.

[30] Levy, I., Povinec, P.P., Aoyama, M., Hirose, K., Sanchez-Cabeza, J.A., Comanducci, J.F., Gastaud, J., Eriksson, M., Hamajima, Y., Kim, C.S., Komura, K., Osvath, I., Roos, P., and Yim, S.A., 2011, Marine anthropogenic radiotracers in the Southern Hemisphere: New sampling and analytical strategies, Prog. Oceanogr., 89 (1), 120–133.

[31] Choppin, G.R., and Rai, D., 2000, Research Program to Determine Redox Reactions and Their Effects on Speciation and Mobility of Plutonium in DOE Wastes, Technical Report, U.S Department of Energy.

[32] Melinda, K., Suseno, H., and Prihatini, W., 2015, Bioaccumulation and distribution of 137Cesium in the Humpback grouper fish (Cromileptes altivelis), Nusantara Biosci., 7 (2), 174–178.

[33] Koropitan, A.F., and Ikeda, M., 2016, Influences of physical processes and anthropogenic influx on biogeochemical cycle in the Java Sea: Numerical model experiment, Procedia Environ. Sci., 33, 532–552.

[34] Aston, S.R., and Fowler, S.W., 1984, Experimental studies on the bioaccumulation of plutonium from sea water and a deep-sea sediment by clams and polychaetes, J. Environ. Radioact., 1 (1), 67–78.

[35] Guary, J.C., Fowler, S.W., and Beasley, T.M., 1982, Routes of plutonium uptake and their relation to biomagnification in starfish. Mar. Pollut. Bull., 13 (3), 99–102.

[36] Grillo, M.C., Guary, J.C., and Fowler, S.W., 1981, Comparative Studies on Transuranium Nuclide Biokinetics in Sediment-Dwelling Invertebrates, International Symposium on the Impacts of Radionuclide Releases into the Marine Environment, Vienna, Austria, 273–291.

[37] Miramand, P., Germain, P., and Camus, H., 1982, Uptake of americium and plutonium from contaminated sediments by three benthic species: Arenicola marina, Corophium volutator and Scrobicularia plana, Mar. Ecol.: Prog. Ser., 7, 59–65.



DOI: https://doi.org/10.22146/ijc.63502

Article Metrics

Abstract views : 1509 | views : 1023


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.