Synthesis and DFT Study of the Complexation of Schiff Base Derived Curcumin and L-Tyrosine with Al(III), Ag(I), and Pb(II) Metal Ions

Ali Mahmood Ali(1), Tagreed Hashim Al-Noor(2), Eid Abdalrazaq(3*), Abdel Aziz Qasem Jbarah(4)

(1) Department of Chemistry, Ibn Al-Haithem College of Education for Pure Science, Baghdad University, Baghdad, Iraq
(2) Department of Chemistry, Ibn Al-Haithem College of Education for Pure Science, Baghdad University, Baghdad, Iraq
(3) Department of Chemistry, College of Science, Al-Hussein Bin Talal University, Ma’an, Jordan
(4) Department of Chemistry, College of Science, Al-Hussein Bin Talal University, Ma’an, Jordan
(*) Corresponding Author


The multi-dentate Schiff base ligand (H2L), where H2L=2,2'-(((1,3,5,6)-1-(3-((l1-oxidaneyl)-l5-methyl)-4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-diylidene)bis(azaneylylidene))bis(3-(4-hydroxyphenyl)propanoic acid), has been prepared from curcumin and L- Tyrosine amino acid. The synthesized Schiff base ligand (H2L) and the second ligand 1,10-phenanthroline (phen) are used to prepare the new complexes [Al(L)(phen)]Cl, K[Ag(L)(phen)] and [Pb(L)(phen)]. The synthesized compounds are characterized by magnetic susceptibility measurements, micro elemental analysis (C.H.N), mass spectrometry, molar conductance, FT-infrared, UV-visible, atomic absorption (AA), 13C-NMR, and 1H-NMR spectral studies. The characterization of the synthesized complexes shows that the environment surrounding the central metal ion in the complexes adopted a distorted octahedral configuration. Moreover, the conductivity measurements show a non-electrolytic character for the [Pb(L)(phen)] complex and an electrolytic character for the [Al(L)(phen)]Cl and K[Ag(L)(phen)] complexes. The experimental infrared data are supported by density functional theory (DFT) calculations using the B3LYP level of theory and LANL2DZ basis set. The vibrational frequencies of the molecules are computed using the optimized geometry obtained from the DFT calculations. The calculated vibrational frequencies have been compared with obtained experimental values. 1H and 13C-NMR chemical shifts were computed for the H2L ligand using the DFT/GIAO method. Additionally, the molecular electronic structures of the complexes have been investigated by DFT calculations.


curcumin; L-tyrosine; silver; aluminium; lead; Schiff base

Full Text:

Full Text PDF


[1] Omidi, S., and Kakanejadifard, A., 2020, A review on biological activities of Schiff base, hydrazone, and oxime derivatives of curcumin, RSC Adv., 10 (50), 30186–30202.

[2] Mahal, A., Wu, P., Jiang, Z.H., and Wei, X., 2019, Schiff bases of tetrahydrocurcumin as potential anticancer agents, ChemistrySelect, 4 (1), 2019, 366–369.

[3] Kareem, A., Khan, M.S., Nami, S.A.A., Bhat, S.A., Mirza, A.U., and Nishat, N., 2018, Curcumin derived Schiff base ligand and their transition metal complexes: Synthesis, spectral characterization, catalytic potential and biological activity, J. Mol. Struct., 1167, 261–273.

[4] Priyadharshini, N., Iyyam, P.S., Subramanian, S., and Venkatesh, P., 2015, Synthesis, spectroscopic characterization and DNA interaction of Schiff base curcumin Cu(II), Ni(II) and Zn(II) complexes, Der Pharma Chem., 7 (10), 186–201.

[5] Ferenc, W., Osypiuk, D., Sarzyński, J., and Głuchowska, H., 2020, Complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with ligand formed by condensation reaction of isatin with glutamic acid, Ecletica Quim. J., 45, 12–27.

[6] Bhanuka, S., and Singh, H.L., 2016, Synthesis, spectroscopic and molecular studies of lead(II) complexes of Schiff bases derived from 4-methoxybenzaldehyde and amino acids, Rasāyan J. Chem., 9 (4), 614–626.

[7] Shukla, S., and Mishra, A.P., 2013, Synthesis, structure, and anticancerous properties of silver complexes, J. Chem., 2013, 527123.

[8] Pradhan, A., and Kumar, A., 2015, A review: An overview on synthesis of some Schiff bases and there metal complexes with anti-microbial activity, Chem. Process Eng. Res., 35, 84–86.

[9] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, M.P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., 2009, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT.

[10] Al-Razaq, E.A., Buttrus, N., Al-Kattan, W., Jbarah, A.A., and Almatarneh, M., 2011, Reactions of Pd2+ and Pt2+ with pyrrolidinedithio carbamate and cystine ligands: Synthesis and DFT calculations, J. Sulfur Chem., 32 (2), 159–169.

[11] Thanakit, P., Suramitr, S., and Phromyothin, D., 2017, The study of metal binding properties and electronic transitions of dithienopyrole derivatives, Mater. Today: Proc., 4 (5), 6585–6591.

[12] Chen, X., Hu, Y., Gao, J., Zhang, Y., and Li, S., 2013, Interaction of melamine molecules with silver nanoparticles explored by surface-enhanced Raman scattering and density functional theory calculations, Appl. Spectrosc., 67 (5), 491–497.

[13] Assefa, M.K., Devera, J.L., Brathwaite, A.D., Mosley, J.D., and Duncan M.A., 2015, Vibrational scaling factors for transition metal carbonyls, Chem. Phys. Lett., 640, 175–179.

[14] Cossi, M., and Barone, V., 2001, Time-dependent density functional theory for molecules in liquid solutions, J. Chem. Phys., 115 (10), 4708–4717.

[15] Cossi, M., Rega, N., Scalmani, G., and Barone V., 2003, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem., 24 (6), 669–681.

[16] O'Boyle, N.M., Tenderholt, A.L., and Langner. K.M., 2008, cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem., 29 (5), 839–845.

[17] Ali, H.R.H., Saleh, G.A., Hussein, S.A., and Hassan, A.I., 2013, Preparation, characterization and atomic absorption spectroscopic determination of some metal complexes of glipizide, Der Pharma Chem., 5 (6), 156–163.

[18] Shahraki, S., and Delarami, H.S., 2018, Magnetic chitosan-(D-glucosimine methyl)benzaldehyde Schiff base for Pb+2 ion removal. Experimental and theoretical methods, Carbohydr. Polym., 200, 211–220.

[19] Shah, A.D., Raval, D.J., Jatakiya, V.P., Sen, D.J., and Badmanaban, R., 2012, Comparison study of antimicrobial activity with effect of DPPH for antioxidant study of synthesized Schiff bases of Mannich bases of resacetophenone having variable electronegative atoms, Int. J. Drug Dev. Res., 4 (2), 205–215.

[20] Yousif, E., Majeed, A., Al-Sammarrae, K., Salih, N., Salimon, J., and Abdullah, B., 2017, Metal complexes of Schiff base: Preparation, characterization and antibacterial activity, Arabian J. Chem., 10 (Suppl. 2), S1639–S1644.

[21] Dehkhodaei, M., Khorshidifard, M., Rudbari, H.A., Sahihi, M., Azimi, G., Habibi, N., Taheri, S., Bruno, G., and Azadbakht, R., 2017, Synthesis, characterization, crystal structure and DNA, HSA-binding studies of four Schiff base complexes derived from salicylaldehyde and isopropylamine, Inorg. Chim. Acta, 466, 48–60.

[22] Gandhi, S.R., Kumar, D.S., Tajudeen, S.S., and Sheriff, A.K.I., 2017, Studies on synthetic, structural characterization, thermal, DNA cleavage, antimicrobial and catalytic activity of tetradentate (N4) Schiff base and its transition transition metal complexes, Asian J. Chem., 29, 1076–1084.

[23] Singh, H.L., and Singh, J.B., 2012, Synthesis and characterization of new lead(II) and organotin(IV) complexes of Schiff bases derived from histidine and methionine, Int. J. Inorg. Chem., 2012, 568797.

[24] Balić, T., Marković, B., and Medvidović-Kosanović, M., 2015, Electrochemical and structural analysis of a novel symmetrical bis-Schiff base with herringbone packing motif, J. Mol. Struct., 1084, 82–88.

[25] de Lima, D.P., Giannesi, G.C., dos Santos, E.A., Freitas, T.S.E., Lopes, R.S., Lopo, M.N., Beatriz, A., Marques, M.R., and Marchetti, C.R., 2017, N-acetylation of aromatic amines by the soil fungus Aspergillus japonicus (UFMS 48.136), Lett. Org. Chem., 14 (4), 227–230.

[26] Abdel-Rahman, L.H., Ismail, N.M., Ismael, M., Abu-Dief, A.M., and Ahmed, E.A.H., 2017, Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand, J. Mol. Struct., 1134, 851–862.

[27] Keypour, H., Aidi, M., Mahmoudabadi, M., Karamian, R., Asadbegy, M., and Gable, R.W., 2019, Synthesis, X-ray crystal structural, antioxidant and antibacterial studies of new Cu(II) macroacyclic Schiff base complex with a ligand containing homopiperazine moiety, J. Mol. Struct., 1198, 126666.

[28] Singh, H.L., and Singh, J., 2014, Synthesis, spectroscopic, molecular structure, and antibacterial studies of dibutyltin(IV) Schiff base complexes derived from phenylalanine, isoleucine, and glycine, Bioinorg. Chem. Appl., 2014, 716578.

[29] Hemalatha, S., Dharmaraja, J., Shobana, S., Subbaraj, P., Esakkidurai, T., and Raman, N., 2020, Chemical and pharmacological aspects of novel hetero MLB complexes derived from NO2 type Schiff base and N2 type 1,10-phenanthroline ligands, J. Saudi Chem. Soc., 24 (1), 61–80.

[30] Nakamoto, K., 2006, “Infrared and Raman spectra of inorganic and coordination compounds” in Handbook of Vibrational Spectroscopy, Eds. Chalmer, J.M., and Griffiths, P.R., John Wiley & Sons, Inc., Hoboken, New Jersey, US.

[31] Savithri, K., Kumar, B.C.V., Vivek, H.K., and Revanasiddappa, H.D., 2018, Synthesis and characterization of cobalt(III) and copper(II) complexes of 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol: DNA binding and nuclease studies—SOD and antimicrobial activities, Int. J. Spectrosc., 2018, 8759372.

[32] Cotton, F.A., Wilkinson, G., Murillo, C.A., and Bochmann, M., 1999, Advanced Inorganic Chemistry, 6th Ed., John Wiley & Sons, Ltd., Chichester, UK.

[33] Lever, A.B.P., 1984, Inorganic Electronic Spectroscopy, Series: Studies in Physical and Theoretical Chemistry, Vol. 33, Elsevier, Amsterdam.

[34] Gulbransen, J.L., and Fitchett, C.M., 2012, Anion directed control of supramolecular structure in silver complexes through weak interactions, CrystEngComm, 14 (7), 5394–5397.

[35] Pettinari, C., Marchetti, F., Orbisaglia, S., Pettinari, R., Ngoune, J., Gómez, M., Santos, C., and Álvarez, E., 2013, Group 11 complexes with the bidentate di(1H-indazol-1-yl)methane and di(2H-indazol-2-yl)methane) ligands, CrystEngComm, 15 (19), 3892–3907.

[36] Nunes, J.H.B., de Paiva, R.E.F., Cuin, A., Lustri, W.R., and Corbi, P.P., 2015, Silver complexes with sulfathiazole and sulfamethoxazole: Synthesis, spectroscopic characterization, crystal structure and antibacterial assays, Polyhedron, 85, 437–444.

[37] Kim, Y., and Kang, S.K., 2015, Crystal structure of bis­[2-(1H-benzimidazol-2-yl)aniline]silver(I) nitrate, Acta Crystallogr., Sect. E: Crystallogr. Commun., 71 (Pt 9), 1058–1060.

[38] Bondi A., 1964, van der Waals volumes and radii. J. Phys. Chem., 68 (3), 441–451.

[39] Soliman, S.M., Mabkhot, Y.N., Barakat, A., and Ghabbour, H.A., 2017, A highly distorted hexacoordinated silver(I) complex: synthesis, crystal structure, and DFT studies, J. Coord. Chem., 70 (8), 1339–1356.

[40] Bergamini, F.R.G., Ferreira, M.A., de Paiva, R.E.F., Gomes, A.F., Gozzo, F.C., Formiga, A.L.B., Corbi, F.C.A., Mazali, I.O., Alves, D.A., Lancellotti, M., and Corbi, P.P., 2012, A binuclear silver complex with L-buthionine sulfoximine: Synthesis, spectroscopic characterization, DFT studies and antibacterial assays, RSC Adv., 2 (27), 10372–10379.

[41] Asadi, Z., Asadi, M., and Shorkaei, M.R., 2016, Synthesis, characterization and DFT study of new water-soluble aluminum(III), gallium(III) and indium(III) Schiff base complexes: Effect of metal on the binding propensity with bovine serum albumin in water, J. Iran. Chem. Soc., 13 (3), 429–442.

[42] Truscott, J.C., Conradie, J., Swart, H.C., Duvenhage, M.M., and Visser, H.G., 2019, Synthesis, crystal structures, photoluminescence, electrochemistry and DFT study of aluminium(III) and gallium(III) complexes containing a novel tetra­dentate Schiff base ligand, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 75 (8), 1045–1052.

[43] Ghanbari, B., and Zarepour-Jevinani, M., 2016, Synthesis and characterization of M(II) (M = Cd, Hg and Pb) complexes with naphthodiaza-crown macrocyclic ligand and study of metal ion recognition by fluorescence, 1H NMR spectroscopy, and DFT calculation, J. Coord. Chem., 69 (18), 2793–2803.

[44] Platas-Iglesias, C., Esteban-Gómez, D., Enríquez-Pérez, T., Avecilla, F., de Blas, A., and Rodríguez-Blas, T., 2005, Lead(II) thiocyanate complexes with bibracchial lariat ethers:  An X-ray and DFT study, Inorg. Chem., 44 (7), 2224–2233.

[45] Mahmoudi, G., Seth, S.K., Riera, A.B., Zubkov, F. I., and Frontera, A., 2020, Novel Pb(II) complexes: X-ray structures, Hirshfeld surface analysis and DFT calculations, Crystals, 10 (7), 568.


Article Metrics

Abstract views : 943 | views : 327

Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.