The Effects of Manganese Dopant Content and Calcination Temperature on Properties of Titania-Zirconia Composite

https://doi.org/10.22146/ijc.61900

Muhamad Imam Muslim(1), Rian Kurniawan(2), Mokhammad Fajar Pradipta(3), Wega Trisunaryanti(4), Akhmad Syoufian(5*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, 55281 Yogyakarta, Indonesia
(2) Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, 55281 Yogyakarta, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, 55281 Yogyakarta, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, 55281 Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


The effects of dopant content and calcination temperature on Mn-doped TiO2-ZrO2 structure and properties were successfully investigated. Composite of Mn-doped titania-zirconia was synthesized by sol-gel method. Titanium(IV) isopropoxide was used as the precursor of TiO2, while zirconiapowder was used as another semiconductor. MnCl2∙4H2O was used as the source of dopant in this study. Various amounts of manganese were incorporated into TiO2-ZrO2 and calcination was performed at temperatures of 500, 700 and 900 °C. Synthesized composites were characterized by Fourier-transform infrared spectroscopy (FTIR), specular reflectance UV-Vis spectroscopy (SR UV-Vis), X-ray diffraction method (XRD) and scanning electron microscopy equipped with X-ray energy dispersive spectroscopy (SEM-EDX). The results showed that Mn-doped TiO2-ZrO2 with the lowest bandgap (2.78 eV) was achieved with 5% of Mn dopant and calcined at 900 °C, while Mn-doped TiO2-ZrO2 with the highest bandgap (3.12 eV) was achieved with 1% of Mn dopant content calcined at 500 °C.

Keywords


Mn-doped ZrTiO4; bandgap; manganese; ZrO2; TiO2

Full Text:

Full Text PDF


References

[1] Syoufian, A., Manako, Y., and Nakashima, K., 2015, Sol-gel preparation of photoactive srilankite-type zirconium titanate hollow spheres by templating sulfonated polystyrene latex particles, Powder Technol., 280, 207–210.

[2] Pirzada, B.M., Mir, N.A., Qutub, N., Mehraj, O., Sabir, S., and Muneer, M., 2015, Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures, Mater. Sci. Eng., B, 193, 137–145.

[3] Cheng, Q., Yang, W., Chen, Q., Zhu, J., Li, D., Fu, L., and Zhou, L., 2020, Fe-doped zirconia nanoparticles with highly negative conduction band potential for enhancing visible light photocatalytic performance, Appl. Surf. Sci., 530, 147291.

[4] Deng, Q.R., Xia, X.H., Guo, M.L., Gao, Y., and Shao, G., 2011, Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity, Mater. Lett., 65 (13), 2051–2054.

[5] El Mragui, A., Zegaoui, O., and Daou, I., 2019, Synthesis, characterization and photocatalytic properties under visible light of doped and co-doped TiO2-based nanoparticles, Mater. Today: Proc., 13, 857–865.

[6] Sulaikhah, E.F., Kurniawan, R., Pradipta, M.F., Trisunaryanti, W., and Syoufian, A., 2020, Cobalt doping on zirconium titanate as a potential photocatalyst with visible-light-response, Indones. J. Chem., 20 (4), 911–918.

[7] Kurniawan, R., Sudiono, S., Trisunaryanti, W., and Syoufian, A., 2019, Synthesis of iron-doped zirconium titanate as a potential visible-light responsive photocatalyst, Indones. J. Chem., 19 (2), 454–460.

[8] Alifi, A., Kurniawan, R., and Syofian, A., 2020, Zinc-doped titania embedded on the surface of zirconia: A potential visible-responsive photocatalyst material, Indones. J. Chem., 20 (6), 1374–1381.

[9] Singh, J., Rathi, A., Rawat, M., Kumar, V., and Kim, K.H., 2019, The effect of manganese doping on structural, optical, and photocatalytic activity of zinc oxide nanoparticles, Composites, Part B, 166, 361–370.

[10] Xu, Y., Lei, B., Guo, L., Zhou, W., and Liu, Y., 2008, Preparation, characterization and photocatalytic activity of manganese doped TiO2 immobilized on silica gel, J. Hazard. Mater., 160 (1), 78–82.

[11] Wu, H., Ma, J., Zhang, C., and He, H., 2014, Effect of TiO2 calcination temperature on the photocatalytic oxidation of gaseous NH3, J. Environ. Sci., 26 (3), 673–682.

[12] Lv, K., Xiang, Q., and Yu, J., 2011, Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed {001} facets, Appl. Catal., B, 104 (3-4), 275–281.

[13] Tomar, L.J., Bhatt, P.J., Desai, R.k., and Chakrabarty, B.S., 2014, Effect of preparation method on optical and structural properties of TiO2/ZrO2 nanocomposite, J. Nanotechnol. Adv. Mater., 2 (1), 27–33.

[14] Wellia, D.V., Xu, Q.C., Sk, M.A., Lim, K.H., Lim, T.M., and Tan, T.T.Y., 2011, Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol-gel method, Appl. Catal., A, 401 (1-2), 98–105.

[15] Sudrajat, H., Babel, S., Ta, A. T., and Nguyen, T. K., 2020, Mn-doped TiO2 photocatalysts: Role, chemical identity, and local structure of dopant, J. Phys. Chem. Solids, 144, 109517.

[16] Sharotri, N., Sharma, D., and Sud, D., 2019, Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants, J. Mater. Res. Technol., 8 (5), 3995–4009.

[17] Fischer, K., Schulz, P., Atanasov, I., Abdul Latif, A., Thomas, I., Kühnert, M., Prager, A., Griebel, J., and Schulze, A., 2018, Synthesis of high crystalline TiO2 nanoparticles on a polymer membrane to degrade pollutants from water, Catalysts, 8 (9), 376.

[18] Gao, X., Zhou, B., and Yuan, R., 2015, Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO2 nanotubes and its effect on Rhodamine B photocatalytic oxidation, Environ. Eng. Res., 20 (4), 329–335.

[19] Venkatachalam, N., Palanichamy, M., Arabindoo, B., and Murugesan, V., 2007, Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2, J. Mol. Catal. A: Chem., 266 (1-2), 158–165.

[20] Radić, N., Grbić, B., Petrović, S., Stojadinović, S., Tadić, N., and Stefanov, P., 2020, Effect of cerium oxide doping on the photocatalytic properties of rutile TiO2 films prepared by spray pyrolysis, Physica B, 599, 412544.

[21] Andita, K.R., Kurniawan, R., and Syoufian, A., 2019, Synthesis and characterization of Cu-doped zirconium titanate as a potential visible-light responsive photocatalyst, Indones. J. Chem., 19 (3), 761–766.

[22] Abdelouahab Reddam, H., Elmail, R., Lloria, S.C., Monrós Tomás, G., Reddam, Z.A., and Coloma-Pascual, F., 2020, Synthesis of Fe, Mn and Cu modified TiO2 photocatalysts for photodegradation of Orange II, Bol. Soc. Esp. Ceram. Vidrio, 59 (4), 138–148.

[23] Samet, L., Ben Nasseur, J., Chtourou, R., March, K., and Stephan, O., 2013, Heat treatment effect on the physical properties of cobalt doped TiO2 sol–gel materials, Mater. Charact., 85, 1–12.



DOI: https://doi.org/10.22146/ijc.61900

Article Metrics

Abstract views : 1447 | views : 634


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.