A New Flavonoid from Malaysian Dipterocarpus cornutus

https://doi.org/10.22146/ijc.61800

Wan Zuraida Wan Mohd Zain(1*), Liliwirianis Nawi(2), Norizan Ahmat(3), Che Puteh Osman(4), Yaya Rukayadi(5)

(1) Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Malacca Branch. Jasin Campus, 77300 Merlimau, Malacca, Malaysia; Pejabat Program Pra Pengajian Tinggi, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
(2) Faculty of Applied Sciences, Universiti Teknologi MARA, Pahang Branch, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
(3) Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia
(4) Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia
(5) Faculty of Food Science and Technology and Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
(*) Corresponding Author

Abstract


Dipterocarpus cornutus Dyer is commonly known as ‘keruing’. It belongs to the family of Dipterocarpaceae, an important timber family in South East Asia. D. cornutus is listed as critically endangered on IUCN Red List. Since no comprehensive study has been documented on the chemical constituents of D. cornutus, there is an urgent need to study this plant comprehensively. Phytochemical study of the stem bark of D. cornutus afforded a new flavonoid (1) and nine known compounds, which consist of flavonoids (2, 3), oligostilbenoids (4, 5, 7, 8, 9, 10), and coumarin (6). The finding of the study contributes to the chemotaxonomic differentiation in the plants of the tribe Dipterocarpae.


Keywords


Dipterocarpus cornutus; Dipterocarpaceae; flavonoid; oligostilbenoids

Full Text:

Full Text PDF


References

[1] Muhtadi, Hakim, E.H., Juliawaty, L.D., Syah, Y.M., Achmad, S.A., Latip, J., and Ghisalberti, E.L. 2006, Cytotoxic resveratrol oligomers from the tree bark of Dipterocarpus hasseltii, Fitoterapia, 77 (7), 550–555.

[2] Muhtadi, Hakim, E.H., Syah, Y.M., Juliawaty, L.D., Achmad, S.A., Said, I.M., and Latip, J., 2005, Tiga senyawa oligostilbenoid dari kulit batang Dipterocarpus retusus Blume (Dipterocarpaceae), JMS, 10 (4), 137–143.

[3] Messer, A., McCormick, K., Sunjaya, Hagedorn, H.H., Tumbel, F., and Meinwald, J., 1990, Defensive role of tropical tree resins: Antitermitic sesquiterpenes from Southeast Asian dipterocarpaceae, J. Chem. Ecol., 16 (12), 3333–3352.

[4] Khiev, P., Kwon, O.K., Song, H.H., Oh, S.R., Ahn, K.S., Lee, H.Y., and Chin, Y.W., 2012, Cytotoxic terpenes from the stem of Dipterocarpus obtusifolius collected in Cambodia, Chem. Pharm. Bull., 60 (8), 955–961.

[5] Senathilake, K.S., Karunanayake, E.H., Samarakoon, S.R., Tennekoon, E.D., de Silva, E.D., and Adhikari, A., 2017, Oleanolic acid from antifilarial triterpene saponins of Dipterocarpus zeylanicus induces oxidative stress and apoptosis in filarial parasite Setaria digitata in vitro, Exp. Parasitol., 177, 13–21.

[6] Ukiya, M., Kikuchi, T., Tokuda, H., Tabata, K., Kimura, Y., Arai, T., Ezaki, Y., Oseto, O., Suzuki, T., and Akihisa, T., 2010, Antitumor‐promoting effects and cytotoxic activities of dammar resin triterpenoids and their derivatives, Chem. Biodivers., 7 (8), 1871–1884.

[7] van der Deolen, G.A., van den Berg, K.J., Boon, J.J., Shibayama, N., René de la Rie, E., and Genuit, W.J.L., 1998, Analysis of fresh triterpenoid resins and aged triterpenoid varnishes by high-performance liquid chromatograhphy-atmospheric pressure chemical ionisation (tandem) mass spectrometry, J. Chromatogr. A, 809 (1), 21–37.

[8] Joshi, K., 2008, Chemotaxonomic investigation of Cotylelobium species (Dipterocarpaceae) using flavonoid analysis, Sci. World, 6 (3), 24–26.

[9] Ito, T., Tanaka, T., Iinuma, M., Nakaya, K., Takahashi, Y., Sawa, R., Murata J., and Darnaedi, D., 2004, Two New Resveratrol (=5-[(1E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol) tetramers with a tetrahydrofuran ring from Dipterocarpus grandiflorus, Helv. Chim. Acta, 87 (2), 479–495.

[10] Ramli, R., Ismail, N.H., and Manshoor, N., 2015, Identification of oligostilbenes from Dipterocarpus semivestitus through dereplication technique, Jurnal Teknologi, 77 (2), 85–88.

[11] Ramli, R., Ismail, N.H., and Manshoor, N., 2017, Recycling HPLC for the purification of oligostilbene from Dipterocarpus semivestitus and Neobalanocarpus heimii (Dipterocarpaceae), J. Liq. Chromatogr. Relat. Technol., 40 (18), 943–949.

[12] Wan Mohd Zain, W.Z., Ahmat, N., and Aisyah, S.K., 2017, Oligostilbenoid from Dipterocarpus cornutus, Planta Med., 4 (S 01), S1-S200.

[13] Surapinit, S., Jong-aramruang, J., Siripong, P., Khunkraktok, S., and Tip-pyang, S., 2014, Dipterostilbenosides A and B, oligostilbene glycosides from Dipterocarpus tuberculatus, Nat. Prod. Commun., 9 (9), 1323–1326.

[14] Sotheeswaran, S., and Pasupathy, V., 1993, Distribution of resveratrol oligomer in plants, Phytochemistry, 32 (5), 1083–1092.

[15] Yang, W.S., Lee, B.H., Kim, S.H., Kim, H.G., Yi, Y.S., Htwe, K.M., Kim, Y.D., Yoon, K.D., Hong, S., Lee, W.S., and Cho, J.Y., 2013, Dipterocarpus tuberculatus ethanol extract strongly suppresses in vitro macrophage-mediated inflammatory responses and in vivo acute gastritis, J. Ethnopharmacol., 146 (3), 873–880.

[16] Chen, Y.S., Chen, C.J., Yan, W., Ge, H.M., and Kong, L.D., 2017, Anti-hyperrucemic and anti-inflammatory actions of vaticaffinol isolated from Dipterocarpus alatus in hyperuricemic rice, Chin. J. Nat. Med., 15 (5), 330–340.

[17] Kamarozaman, A.S., Latip, J., and Wan Mohd Zain, W.Z., 2013, Antioxidant properties of Vatica Pauciflora and Vatica lowii crude extracts, JOLST, 1 (4), 205–209.

[18] USDA-ARS, 2008, Germplasm Resources Information Network-(GRIN), Online Database, National Germplasm Resources Laboratory, Beltsville, Maryland, http://www.ars-grin.gov/cgi.bin/npgs/html/taxon.pl?446747, accessed on 10 July 2014.

[19] Wan Mohd Zain, W.Z., and Ahmat, N., 2011, Study on antibacterial and antioxidant activities against dimer, trimer and tetramer resveratrol from Malaysian’s Dipterocarpus verrucosus, Planta Med., 77, SL57.

[20] Wan Mohd Zain, W.Z., Ahmat, N., and Osman, C.P., 2018, Neurotoxicity, antioxidant and antibacterial activity of Diptoindonesin E, tetramer resveratrol from Dipterocarpus verrucosus, ESTEEM Acad. J., 14, 42–50.

[21] Basri, D.F., Luoi, C.K., Azmi, A.M., and Latip, J., 2012, Evaluation of the combined effects of stilbenoid from Shorea gibbosa and vancomycin against methicillin-resistant Staphylococcus aureus (MRSA), Pharmaceutical, 5 (9), 1032–1043.

[22] Wan Mohd Zain, W.Z., Ahmat, N., and Osman, C.P., 2018, Antioxidant activities of oligostilbenoids from the stem bark of Dipterocarpus verrucosus, Dipterocarpus crinitus and Dipterocarpus cornutus, Int. J. Eng. Technol., 7 (4.18), 409–414.

[23] Wan Mohd Zain, W.Z., Ahmat, N., Rukayadi, Y., Osman, C.P., Yusoff, N.A.H., and Winda, N., 2019, In vitro antimycotic activity of chemical constituents from Dipterocarpus verrucosus, Dipterocarpus cornutus and Dipterocarpus crinitus against opportunistic filamentous fungi, Asian J. Agric. Biol., 7 (3), 344–354.

[24] Symington, C.F., 1974, Foresters’ Manual of Dipterocarps, University Malaya Publication, Kuala Lumpur.

[25] Aslam, M.S., Ahmad, M.S., and Mamat, A.S., 2015, A phytochemical, ethnomedicinal and pharmacological review of genus Dipterocarpus, Int. J. Pharm. Pharm. Sci., 7 (4), 27–38.

[26] Wibowo, A., Ahmat, N., Hamzah, A.S., Latif, F.A., Norrizah, J.S., Khong, H.Y., and Takayama, H., 2014, Identification and biological activity of secondary metabolites from Dryobalanops beccarii, Phytochem. Lett., 9, 117–122.

[27] Tanaka, T., Ito, T., Iinuma, M., Ohyama, M., Ichise, M., and Tateishi, Y., 2000, Stilbene oligomers in roots of Sophora davidii, Phytochemistry, 53 (8), 1009–1014.

[28] Ohyama, M., Tanaka, T., Ito, T., Iinuma, M., Bastow, K.F., and Lee, K.H., 1999, Antitumor agents 200. Cytotoxicity of naturally occurring resveratrol oligomers and their acetate derivatives, Bioorg. Med. Chem. Lett., 9, 3057–3060.

[29] Tanaka, T., Ito, T., Nakaya, K., Iinuma, M., Takahashi, Y., Naganawa, H., and Riswan, S., 2001, Six new heterocyclic stilbene oligomers from stem bark of Shorea hemsleyana, Heterocycles, 55 (4), 729–740.

[30] Li, W.W., Ding, L.S., Li, B.G., and Chen, Y.Z., 1996, Oligostilbenes from Vitis heyneana, Phytochemistry, 42 (4), 1163–1165.

[31] Hirano, Y., Kondo, R., and Sakai, K., 2003, Novel stilbenoid isolated from the heartwood of Shorea laevifolia, J. Wood Sci., 49 (1), 53–58.

[32] Oshima, Y., Ueno, Y., Hisamichi, K., and Takeshita, M., 1993, Ampelopsin F and G, novel bridged plant oligostilbenes from Ampelopsis brevipedunculata var. hancei roots (Vitaceae), Tetrahedron, 49 (26), 5801–5804.

[33] Rohaiza, S., Yaacob, W.A., Din, L.B., and Nazlina, I., 2011, Cytotoxic oligostilbenes from Shorea hopeifolia, Afr. J. Pharm. Pharmacol., 5 (9), 1272–1277.

[34] Davis, A.L., Cai, Y., Davies, A.P., and Lewis, J.R., 1996, 1H and 13C NMR assignments of some green tea polyphenols, Magn. Reson. Chem., 34 (11), 887–890.

[35] Abu-Eittah, R.H., and El-Tawil, B.A., 1985, The electronic absorption spectra of some coumarins, A molecular orbital treatment, Can. J. Chem., 63, 1173–1179.

[36] Talip, N., Greenharm, J., Cutler, D.F., and Lucas, M.K., 2008, The utility of leaf flavonoids as taxonomic markers for some Malaysian species of the tribe Shoreae (Dipterocarpaceae), Bot. J. Linnn. Soc., 157, 755–762.



DOI: https://doi.org/10.22146/ijc.61800

Article Metrics

Abstract views : 1491 | views : 1151


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.