Developments on Synthesis and Applications of Sulfobetaine Derivatives: A Brief Review

https://doi.org/10.22146/ijc.61128

Eva Oktavia Ningrum(1*), Eva Lestiana Pratiwi(2), Isyarah Labbaika Shaffitri(3), Suprapto Suprapto(4), Mentari Rachmatika Mukti(5), Ely Agustiani(6), Niniek Fajar Puspita(7), Achmad Dwitama Karisma(8)

(1) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
(2) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
(3) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
(4) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
(5) Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Cracow, Poland
(6) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
(7) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
(8) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
(*) Corresponding Author

Abstract


Zwitterionic polymers are material families characterized by high dipole moment and highly charged groups. Zwitterionic materials simultaneously possess an equimolar number of cationic and anionic moieties, maintaining overall electroneutrality and high hydrophilicity. Zwitterionic is categorized into three groups: phosphobetaine, carboxybetaine, and sulfobetaine that could form dense and stable hydration shells through the strong ion-dipole interaction among water molecules and zwitterions. As a result of their remarkable hydration capability, low interfacial energy, and marvelous antifouling capacities, these materials have been applied as adsorbing agents, biomedical applications, electronics, hydrogels, and antifouling for membrane separation and marine coatings. This review is focused on polysulfobetaine, which contains sulfonate as a negatively charged group, and quaternary ammonium as a positively charged group. Polysulfobetaine is the most promising one to be applied in the industry since it is commercially available and its monomers are easily prepared. The comparisons of several polysulfobetaine derivatives as antimicrobial, antifouling, surfactant and detergents, biomedical and electronic application, surface modification, and smart hydrogel are presented in this review.


Keywords


zwitterionic; sulfobetaine; antifouling; biomedical application

Full Text:

Full Text PDF


References

[1] He, M., Gao, K., Zhou, L., Jiao, Z., Wu, M., Cao, J., You, X., Cai, Z., Su, Y., and Jiang, Z., 2016, Zwitterionic materials for antifouling membrane surface construction, Acta Biomater., 40, 142–152.

[2] Shao, Q., and Jiang, S., 2014, Molecular understanding and design of zwitterionic, Adv. Mater., 27 (1), 15–26.

[3] Zou, H., Wang, Z., and Feng, M., 2015, Nanocarriers with tunable surface properties to unblock bottlenecks in systemic drug and gene delivery, J. Controlled Release, 214, 121–133.

[4] He, Y., Hower, J., Chen, S., Bernards, M.T., Chang, Y., and Jiang, S., 2008, Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self–assembled monolayers in the presence of water, Langmuir, 24 (18), 10358–10364.

[5] Schlenoff, J.B., 2014, Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption, Langmuir, 30 (32), 9625−9636.

[6] Suprapto, S., Gotoh, T., Humaidah, N., Febryanita, R., Firdaus, M.S., and Ningrum, E.O., 2020, The effect of synthesis condition of the ability of swelling, adsorption, and desorption of zwitterionic sulfobetaine–based gel, Int. J. Technol., 11 (2), 299–309.

[7] Ningrum, E.O., Sakohara, S., Gotoh, T., Suprapto, and Humaidah, N., 2020, Correlating properties between sulfobetaine hydrogels and polymers with different carbon spacer lengths, Polymer, 186, 122013.

[8] Ningrum, E.O., Purwanto, A., Rosita, G.C., and Bagus, A., 2020, The properties of thermosensitive zwitterionic sulfobetaine NIPAM–co–DMAAPS polymer and the hydrogels: The effects of monomer concentration on the transition temperature and its correlation with the adsorption behavior, Indones.J. Chem., 20 (2), 324–335.

[9] Ningrum, E.O., Bagus, A., Agustiani, E., and Ni’mah, H., 2020, Thermosensitive and chitosan of crab (Portunus pelagicus) shells gel based adsorbent for reversible adsorption–desorption of several toxic metal ions, IOP Conf. Ser.: Earth Environ. Sci., 460, 012017.

[10] Salamone, J.C., Volksen, W., Olson, A.P., and Israel, S.C., 1978, Aqueous solution properties of a poly(vinyl imidazolium sulphobetaine), Polymer, 19 (10), 1157–1162.

[11] Takahashi, A., Hamai, K., Okada, Y., and Sakohara, S., 2011, Thermosensitive properties of semi–IPN gel composed of amphiphilic gel and zwitterionic thermosensitive polymer in buffer solutions containing high concentration salt, Polymer, 52 (17), 3791–3799.

[12] Kudaibergenov, S., Jaeger, W., and Laschewsky, A., 2006, Polymeric betaines: Synthesis, characterization, and application, Adv. Polym. Sci., 201, 157–224.

[13] Ningrum, E.O., Sakohara, S., Gotoh, T., Suprapto, and Humaidah, N., 2019, The effect of cation and anion species on the transition and adsorption behaviors of thermosensitive sulfobetaine gel– based adsorbent, Int. J. Technol., 10 (3), 443–452.

[14] Zheng, L., Sundaram, H.S., Wei, Z., Li, C., and Yuan, Z., 2017, Applications of zwitterionic polymers, React. Funct. Polym., 118, 51–61.

[15] Lowe, A.B., and McCormick, C.L., 2002, Synthesis and solution properties of zwitterionic polymers, Chem. Rev., 102 (11), 4177–4190.

[16] Yakimova, L.S., Padnya, P.L., Kunafina, A.F., Nugmanova, A.R., and Stoikov, I.I., 2019, Sulfobetaine derivatives of thiacalix[4]arene: Synthesis and supramolecular self–assembly of submicron aggregates with AgI cations, Mendeleev Commun., 29 (1), 86–88.

[17] Yakimova, L., Padnya, P., Tereshina, D., Kunafina, A., Nugmanova, A., Osin, Y., Evtugyn, V., and Stoikov, I., 2019, Interpolyelectrolyte mixed nanoparticles from anionic and cationic thiacalix[4]arenes for selective recognition of model biopolymers, J. Mol. Liq., 279, 9–17.

[18] Shurpik, D.N., Sevastyanov, D.A., Zelenikhin, P.V, Padnya, P.L., Evtugyn, V.G., Osin, Y.N., and Stoikov, I.I., 2020, Nanoparticles based on the zwitterionic pillar[5]arene and Ag+: Synthesis , self-assembly and cytotoxicity in the human lung cancer cell line A549, Beilstein J. Nanotechnol., 11, 421–431.

[19] Yan, M., Ge, J., Dong, W., Liu, Z., and Ouyang, P., 2006, Preparation and characterization of a temperature–sensitive sulfobetaine polymer-trypsin conjugate, Biochem. Eng. J., 30 (1), 48–54.

[20] Kasák, P., Mosnáček, J., Danko, M., Krupa, I., Hloušková, G., Chorvát, D., Koukaki, M., Karamanou, S., Economou, A., and Lacík, I., 2016, A polysulfobetaine hydrogel for immobilization of glucose-binding protein, RSC Adv., 6, 83890–83900.

[21] Liu, Y., Duzhko, V.V, Page, Z.A., Emrick, T., and Russell, T.P., 2016, Conjugated polymer zwitterions : efficient interlayer materials in organic electronics, Acc. Chem. Res., 49 (11), 2478–2488.

[22] Lee, H., Puodziukynaite, E., Zhang, Y., Stephenson, J.C., Richter, L.J., Fischer, D.A., DeLongchamp, D.M., Emrick, T., and Briseno, A.L., 2015, Poly(sulfobetaine methacrylate)s as electrode modifiers for inverted organic electronics, J. Am. Chem. Soc., 137 (1), 540–549.

[23] Fang, J., Wallikewitz, B.H., Gao, F., Tu, G., Müller, C., Pace, G., Friend, R.H., and Huck, W.T.S., 2011, Conjugated zwitterionic polyelectrolyte as the charge injection layer for high–performance polymer light–emitting diodes, J. Am. Chem. Soc., 133 (4), 683–685.

[24] Arotçaréna, M., Heise, B., Ishaya, S., and Laschewsky, A., 2002, Switching the inside and the outside of aggregates of water–soluble block copolymers with double thermoresponsivity, J. Am. Chem. Soc., 124, 3787–3793.

[25] Ladd, J., Zhang, Z., Chen, S., Hower, J.C., and Jiang, S., 2008, Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma, Biomacromolecules, 9 (5), 1357–1361.

[26] Li, A., Luehmann, H.P., Sun, G., Samarajeewa, S., Zou, J., Zhang, S., Zhang, F., Welch, M.J., Liu, Y., and Wooley, K.L., 2012, Synthesis and in vivo pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly(carboxybetaine) versus poly(ethylene glycol) surface-grafted coatings, ACS Nano, 6 (10), 8970–8982.

[27] Statz, A.R., Meagher, R.J., Barron, A.E., and Messersmith, P.B., 2005, New Peptidomimetic Polymers for Antifouling Surfaces, J. Am. Chem. Soc., 127 (22), 7972–7973.

[28] Li, G., Cheng, G., Xue, H., Chen, S., Zhang, F., and Jiang, S., 2008, Ultra low fouling zwitterionic polymers with a biomimetic adhesive group, Biomaterials, 29 (35), 4592–4597.

[29] Chen, S., Zheng, J., Li, L., and Jiang, S., 2005, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials, J. Am. Chem. Soc., 127 (41), 14473–14478.

[30] Chang, Y., Chen, S., Zhang, Z., and Jiang, S., 2006, Highly protein–resistant coatings from well-defined diblock copolymers containing sulfobetaines, Langmuir, 22 (5), 2222–2226.

[31] Zhang, Z., Chen, S., Chang, Y., and Jiang, S., 2006, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings, J. Phys. Chem. B, 110 (22), 10799–10804.

[32] Zhang, Z., Chao, T., Chen, S., and Jiang, S., 2006, Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides, Langmuir, 22 (24), 10072–10077.

[33] Zhang, Z., Chen, S., and Jiang, S., 2006, Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization, Biomacromolecules, 7 (12), 3311–3315.

[34] Jiang, S., and Cao, Z., 2010, Ultralow–fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Adv. Mater., 22 (9), 920–932.

[35] Cao, B., Lee, C.J., Zeng, Z., Cheng, F., Xu, F., Cong, H., and Cheng, G., 2016, Electroactive poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) with controllable antifouling and antimicrobial properties, Chem. Sci., 7 (3), 1976–1981.

[36] Simon, R.J., Kania, R.S., Zuckermann, R.N., Huebner, V.D., Jewell, D.A., Banville, S., Ng, S., Wang, L., Rosenberg, S., Marlowe, C.K., 1992, Peptoids: A modular approach to drug discovery, Proc. Natl. Acad. Sci. U.S.A., 89 (20), 9367–9371.

[37] Ouyang, J., Chu, C.W., Chen, F., Xu, Q., and Yang, Y., 2005, High–conductivity poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) film and its application in polymer optoelectronic devices, Adv. Funct. Mater., 15 (2), 203–208.

[38] Sotzing, G.A., Reynolds, J.R., and Steel, P.J., 1991, Poly(3,4‐ethylenedioxythiophene) (PEDOT) prepared via electrochemical polymerization of EDOT, 2,2′‐Bis(3,4‐ethylenedioxythiophene) (BiEDOT), and their TMS derivatives, Adv. Mater., 9 (10), 795–798.

[39] Gaupp, C.L., Zong, K., Schottland, P., Thompson, B.C., Thomas, C.A., and Reynolds, J.R., 2000, Poly(3,4–ethylenedioxypyrrole): Organic electrochemistry of a highly stable electrochromic polymer, Macromolecules, 33 (4), 1132–1133.

[40] Erb, B.T., Zhokhavets, U., Gobsch, G., Raleva, S., Stühn, B., Schilinsky, P., Waldauf, C., and Brabec, C.J., 2005, Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells, Adv. Funct. Mater., 15 (7), 1193–1196.

[41] Patch, J.A., and Barron, A.E., 2002, Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers, Curr. Opin. Chem. Biol., 6 (6), 872–877.

[42] Chang, Y., Liao, S.C., Higuchi, A., Ruaan, R.C., Chu, C.W., and Chen, W.Y., 2008, A highly stable nonbiofouling surface with well–packed grafted zwitterionic polysulfobetaine for plasma protein repulsion, Langmuir, 24 (10), 5453–5458.

[43] Sun, Q., Su, Y., Ma, X., Wang, Y., and Jiang, Z., 2006, Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer, J. Membr. Sci., 285 (1), 299–305.

[44] Wei, J., Ravn, D.B., Gram, L., and Kingshott, P., 2003, Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion, Colloids Surf., B, 32 (4), 275–291.

[45] Guo, W., Ngo, H., and Li, J., 2012, A mini–review on membrane fouling, Bioresour. Technol., 122, 27–34.

[46] Hadidi, M., and Zydney, A.L., 2014, Fouling behavior of zwitterionic membranes: Impact of electrostatic and hydrophobic interactions, J. Membr. Sci., 452, 97–103.

[47] Ginic–Markovic, M., Barclay, T.G., Constantopoulos, K.T., Markovic, E., Clarke, S.R., and Matisons, J.G., 2015, Biofouling resistance of polysulfobetaine coated reverse osmosis membranes, Desalination, 369, 37–45.

[48] Ostuni, E., Chapman, R.G., Holmlin, R.E., Takayama, S., and Whitesides, G.M., 2001, A survey of structure-property relationships of surfaces that resist the adsorption of protein, Langmuir, 17 (18), 5605–5620.

[49] Sin, M.C., Chen, S.H., and Chang, Y., 2014, Hemocompatibility of zwitterionic interfaces and membranes, Polym. J., 46 (8), 436–443.

[50] Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J., and Kusumo, A., 2007, Grafting from surfaces for “Everyone": ARGET ATRP in the presence of air, Langmuir, 23 (8), 4528–4531.

[51] Gillich, T., Benetti, E.M., Rakhmatullina, E., Konradi, R., Li, W., Zhang, A., Schlüter, A.D., and Textor, M., 2011, Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: Adsorption kinetics, surface characterization, and nonfouling properties, J. Am. Chem. Soc., 133, 10940–10950.

[52] Hjelmeland, L.M., Nebert, D.W., and Osborne, J.C., 1983, Sulfobetaine derivatives of bile acids: Nondenaturing surfactants for membrane biochemistry, Anal. Biochem., 130 (1), 72–82.

[53] Parris, N., Pierce, C., and Linfield, W.M., 1977, Soap based detergent formulation: XXIV. Sulfobetaine derivatives of fatty amides, J. Am. Oil Chem. Soc., 54 (7), 294–296.

[54] Micich, T.J., and Linfield, W.M., 1977, Soap-based detergent formulations: XXII. Sulfobetaine derivatives of N-alkylglutaramides and adipamides, J. Am. Oil Chem. Soc., 54 (6), 264–266.

[55] Gaweł, K., Szczubiałka, K., Zapotoczny, S., and Nowakowska, M., 2010, Zwitterionically modified hydroxypropylcellulose for biomedical applications, Eur. Polym. J., 46 (7), 1475–1479.

[56] Dupont–Gillain, C.C., Fauroux, C.M.J., Gardner, D.C.J., and Leggett, G.J., 2003, Use of AFM to probe the adsorption strength and time‐dependent changes of albumin on self‐assembled monolayers, J. Biomed. Mater. Res., Part A, 67A (2), 548–558.

[57] Teramura, Y., and Iwata, H., 2010, Cell surface modification with polymers for biomedical studies, Soft Matter, 6 (6), 1081–1091.

[58] Chen, S., Li, L., Zhao, C., and Zheng, J., 2010, Surface hydration: Principles and applications toward low–fouling/nonfouling biomaterials, Polymer, 51 (23), 5283–5293.

[59] Li, H., Xu, Y., Hoven, C.V., Li, C., Seo, J.H., and Bazan, G.C., 2009, Molecular design, device function and surface potential of zwitterionic electron injection layers, J. Am. Chem. Soc., 131 (25), 8903–8912.

[60] Tordera, D., Kuik, M., Rengert, Z.D., Bandiello, E., Bolink, H.J., Bazan, G.C., and Nguyen, T.Q., 2014, Operational mechanism of conjugated polyelectrolytes operational mechanism of conjugated polyelectrolytes. J. Am. Chem. Soc., 136 (24), 8500–8503.

[61] Chueh, C.C., Li, C.Z., and Jen, A.K.Y., 2015, Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells, Energy Environ. Sci., 8 (4), 1160–1189.

[62] Huang, F., Wu, H., and Cao, Y., 2010, Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices, Chem. Soc. Rev., 39 (7), 2500–2521.

[63] Duan, C., Zhang, K., Zhong, C., Huang, F., and Cao, Y., 2013, Recent advances in water/alcohol–soluble p–conjugated materials: New materials and growing applications in solar cells, Chem. Soc. Rev., 42 (23), 9071–9104.

[64] He, Z., Wu, H., and Cao, Y., 2014, Recent advances in polymer solar cells: Realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer, Adv. Mater., 26 (7), 1006–1024.

[65] Sobolčiak, P., Popelka, A., Mičušík, M., Sláviková, M., Krupa, I., Mosnáček, J., Tkáč, J., Lacík, I., and Kasák, P., 2017, Photoimmobilization of zwitterionic polymers on surfaces to reduce cell adhesion, J. Colloid Interface Sci., 500, 294–303.

[66] Kollar, J., Popelka, A., Tkáč, J., Žabka, M., Mosnáček, J., and Kasák, P., 2021, Sulfobetaine-based polydisulfides with tunable upper critical solution temperature (UCST) in water alcohols mixture, depolymerization kinetics and surface wettability, J. Colloid Interface Sci., 588, 196–208.

[67] Hoogenboom, R., Becer, C.R., Guerrero-Sanchez, C., Hoeppener, S., and Schubert, U.S., 2010, Solubility and thermoresponsiveness of PMMA in alcohol-water solvent mixtures, Aust. J. Chem., 63 (8), 1173–1178.

[68] Matsuda, Y., Kobayashi, M., Annaka, M., Ishihara, K., and Takahara, A., 2008, UCST-type cononsolvency behavior of poly(2-methacryloxyethyl phosphorylcholine) in the mixture of water and ethanol, Polym. J., 40 (5), 479–483.

[69] Seuring, J., and Agarwal, S., 2012, Polymers with upper critical solution temperature in aqueous solution, Macromol. Rapid Commun., 33 (22), 1898–1920.

[70] Seuring, J., and Agarwal, S., 2013, Polymers with upper critical solution temperature in aqueous solution: Unexpected properties from known building blocks, ACS Macro Lett., 2 (7), 597–600.

[71] Blackman, L.D., Gunatillake, P.A., Cass, P., and Locock, K.E.S., 2019, An introduction to zwitterionic polymer behavior and applications in solution and at surfaces, Chem. Soc. Rev., 48 (3), 757–770.

[72] Wood, P.A., Zhu, Y., Pei, Y., and Roth, P.J., 2014, Hydrophobically modified sulfobetaine copolymers with tunable aqueous UCST through postpolymerization modification of poly(pentafluorophenyl acrylate), Macromolecules, 47 (2), 750−762.

[73] Li, D., Wei, Q., Wu, C., Zhang, X., Xue, Q., Zheng, T., and Cao, M., 2020, Superhydrophilicity and strong salt–affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems, Adv. Colloid Interface Sci., 278, 102141.

[74] Zhou, L., Zhu, Y., Wang, X., Shen, C., Wei, X., Xu, T., and He, Z., 2020, Novel zwitterionic vectors: Multi–functional delivery systems for therapeutic genes and drugs, Comput. Struct. Biotechnol. J., 18, 1980–1999

[75] Danko, M., Kroneková, Z., Mrlik, M., Osicka, J., bin Yousaf, A., Mihálová, A., Tkac, J., and Kasak, P., 2019, Sulfobetaines meet carboxybetaines: Modulation of thermo- and ion-responsivity, water structure, mechanical properties and cell adhesion, Langmuir, 35 (5), 1391–1403.

[76] Mrlík, M., Špírek, M., Al-Khori, J., Ahmad, A.A., Mosnaček, J., AlMaadeed, M.A.A., and Kasák, P., 2020, Mussel-mimicking sulfobetaine–based copolymer with Metal tuneable gelation, self–healing and antibacterial capability, Arabian J. Chem., 13 (1), 193–204.

[77] Zavahir, S., Krupa, I., AlMaadeed, S.A., Tkac, J., and Kasak, P., 2019, Polyzwitterionic hydrogels in engines based on the antipolyelectrolyte effect and driven by the salinity gradient, Environ. Sci. Technol., 53 (15), 9260–9268.

[78] Söntjens, S.H.M., Nettles, D.L., Carnahan, M.A., Setton, L.A., and Grinstaff, M.W., 2006, Biodendrimer-based hydrogel scaffolds for cartilage tissue repair, Biomacromolecules, 7 (1), 310–316.

[79] Balakrishnan, B., and Banerjee, R., 2011, Biopolymer-based hydrogels for cartilage tissue engineering, Chem. Rev., 111 (8), 4453–4474.

[80] Lee, K.Y., and Mooney, D.J., 2001, Hydrogels for Tissue Engineering, Chem. Rev., 101, 1869–1880.

[81] Wang, F., Li, Z., Khan, M., Tamama, K., Kuppusamy, P., Wagner, W.R., Sen, C.K., and Guan, J., 2010, Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers, Acta Biomater., 6 (6), 1978–1991.

[82] Wu, J., Ding, Q., Dutta, A., Wang, Y., Huang, Y., Weng, H., Tang, L., and Hong, Y., 2015, An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration, Acta Biomater., 16, 49–59.

[83] Jaiswal, M., Dinda, A.K., Gupta, A., and Koul, V., 2010, Polycaprolactone diacrylate crosslinked biodegradable semi–interpenetrating networks of polyacrylamide and gelatin for controlled drug delivery, Biomed. Mater., 5 (6), 065014.

[84] Zhao, C., Patel, K., Aichinger, L.M., Liu, Z., Hu, R., Chen, H., Li, X., Li, L., Zhang, G., Chang, Y., and Zheng, J., 2013, Antifouling and biodegradable poly(N–hydroxyethyl acrylamide) (polyHEAA)-based nanogels, RSC Adv., 3 (43), 19991–20000.

[85] Gu, X., Ning, Y., Yang, Y., and Wang, C., 2014, One-step synthesis of porous graphene-based hydrogels containing oil droplets for drug delivery, RSC Adv., 4 (7), 3211–3218.

[86] Masters, K.S.B., Leibovich, S.J., Belem, P., West, J.L., and Poole-Warren, L.A., 2002, Effects of nitric oxide releasing poly(vinyl alcohol) hydrogel dressings on dermal wound healing in diabetic mice, Wound Repair Regen., 10 (5), 286–294.

[87] Holland, T.A., Tessmar, J.K.V., Tabata, Y., and Mikos, A.G., 2004, Transforming growth factor–β1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment, J. Controlled Release, 94 (1), 101–114.

[88] Ekblad, T., Bergström, G., Ederth, T., Conlan, S.L., Mutton, R., Clare, A.S., Wang, S., Liu, Y., Zhao, Q., D'Souza, F., Donnelly G.T., Willemsen, P.R., Pettitt, M.E., Callow, M.E., Callow, J.A., and Liedberg, B., 2008, Poly(ethylene glycol)-Containing hydrogel surfaces for antifouling applications in marine and freshwater environments, Biomacromolecules, 9 (10), 2775–2783.

[89] Zhao, C., Li, X., Li, L., Cheng, G., Gong, X., and Zheng, J., 2013, Dual functionality of antimicrobial and antifouling of poly(N‑hydroxyethylacrylamide)/ salicylate hydrogels, Langmuir, 29 (5), 1517–1524.

[90] Hoffman, A.S., 2012, Hydrogels for biomedical applications, Adv. Drug Delivery Rev., 64, 18–23.

[91] Chen, Q., Chen, H., Zhu, L., and Zheng, J., 2015, Fundamentals of double network hydrogels, J. Mater. Chem. B, 3 (18), 3654–3676.

[92] Elliott, N.T., and Yuan, F., 2011, A review of three-dimensional in vitro tissue models for drug discovery and transport studies, J. Pharm. Sci., 100, 2–8.

[93] Steward, A.J., Liu, Y., and Wagner, D.R., 2011, Engineering cell attachments to scaffolds in cartilage tissue engineering, Biomater. Regener. Med., 63 (4), 74–82.

[94] Wu, J., Xiao, Z., Chen, A., He, H., He, C., Shuai, X., Li, X., Chen, S., Zhang, Y., Ren, B., Zheng, J., and Xiao, J., 2018, Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin regeneration, Acta Biomater., 71, 293–305.

[95] Chang, Y., Shu, S., Shih, Y., Chu, C., Ruaan, R., and Chen, W., 2010, Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling, Langmuir, 26, 3522–3530.

[96] Jiang, S., and Cao, Z., 2010, Ultralow–fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Adv. Mater., 22 (9), 920–932.

[97] Chen, S., Li, L., Zhao, C., and Zheng, J., 2010, Surface hydration: Principles and applications toward low–fouling/nonfouling biomaterials, Polymer, 51 (23), 5283–5293.

[98] Keefe, A.J., and Jiang, S., 2012, Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity, Nat. Chem., 4 (1), 59–63.



DOI: https://doi.org/10.22146/ijc.61128

Article Metrics

Abstract views : 2198 | views : 1533


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.