Groundwater Recharge Area Based on Hydrochemical and Environmental Isotopes Analysis in the South Bandung Volcanic Area

https://doi.org/10.22146/ijc.58633

Rizka Maria Maria(1*), Satrio Satrio(2), Teuku Yan Waliyana Muda Iskandarsyah(3), Bombom Rachmat Suganda(4), Robert Mohammad Delinom(5), Dyah Marganingrum(6), Wahyu Purwoko(7), Dady Sukmayadi(8), Hendarmawan Hendarmawan(9)

(1) Faculty of Geological Engineering, Padjadjaran University, Jl. Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia Research Center for Geotechnology LIPI, Jl. Sangkuriang, Bandung 40135, Indonesia
(2) Faculty of Geological Engineering, Padjadjaran University, Jl. Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia Center for Isotopes and Radiation Application – BATAN, Jl. Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
(3) Faculty of Geological Engineering, Padjadjaran University, Jl. Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
(4) Faculty of Geological Engineering, Padjadjaran University, Jl. Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
(5) Research Center for Geotechnology LIPI, Jl. Sangkuriang, Bandung 40135, Indonesia
(6) Research Center for Geotechnology LIPI, Jl. Sangkuriang, Bandung 40135, Indonesia
(7) Research Center for Geotechnology LIPI, Jl. Sangkuriang, Bandung 40135, Indonesia
(8) Research Center for Geotechnology LIPI, Jl. Sangkuriang, Bandung 40135, Indonesia
(9) Faculty of Geological Engineering, Padjadjaran University, Jl. Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
(*) Corresponding Author

Abstract


The determination of recharge areas needs to support the groundwater conservation in the southern volcanic Bandung area. This study aims to determine the recharge area based on environmental isotopes and hydrochemical. A sampling of 26 groundwater was carried out at springs, dug wells, and drilling wells. The variation in groundwater chemistry principally is controlled by a combination of ion exchange, silicate weathering, calcite, and dolomite dissolution of minerals. The hydrochemical facies were CaCl, CaMgCl, CaMgHCO3, CaHCO3, and NaKHCO3. The CaHCO3 facies describe moderate groundwater flows. The NaKHCO3 facies shows the mixing of shallow and deep groundwater. The recharge area in the central, proximal, and medial facies zone consists of 3 groups. Group I is considered water originating from local rainwater infiltration; Group II is considered the infiltration elevation which ranges from 980–1230 m asl; Group III estimated to be derived from the recharge elevation between 750–970 m asl, Group IV are more likely to show symptoms of evaporation or interaction with surface water. The discharge area is characterized by less active groundwater circulation, with dominant HCO3 and TDS value in the distal facies zone. Hydrochemical variation helped the identification of recharge areas in the volcanic facies.

Keywords


volcanic facies; recharge; groundwater; environmental isotopes

Full Text:

Full Text PDF


References

[1] Hendarmawan, and Satrio, 2011, Recharge area on the slopes of volcano based on geological setting, content of deuterium and oxygen isotopes of groundwater chemistry: Case study on the slopes of Salak mountain, West Java, J. Trop. Soils, 16 (3), 245–256.

[2] Satrio, Hendarmawan, Hadian, M.S.D., and Pujiindiyati, E.R., 2016, Karakteristik air tanah dangkal kota Semarang pada musim penghujan berdasarkan pendekatan isotop stabil (18O, 2H) dan kimia air, J. Ilm. Apl. Isot. Radiasi, 11 (1), 73–86.

[3] Toulier, A., Baud, B., de Montety, V., Lachassagne, P., Leonardi, V., Pistre, V., Dautria, J.M., Hendrayana, H., Fajar, M.H.M., Muhammad, A.S., Beon, O., and Jourde, H., 2019, Multidisciplinary study with quantitative analysis of isotopic data for the assessment of recharge and functioning of volcanic aquifers: Case of Bromo-Tengger volcano, Indonesia, J. Hydrol.: Reg. Stud., 26, 100634.

[4] Abidi, J.H., Farhat, B., Ben Mammou, A., and Oueslati, N., 2017, Characterization of recharge mechanisms and sources of groundwater salinization in Ras Jbel coastal aquifer (Northeast Tunisia) using hydrogeochemical tools, environmental isotopes, GIS, and statistics, J. Chem., 2017, 8610894.

[5] Resubun, M.L., Wahjunie, E.D., and Tarigan, S.D., 2018, Analisis potensi ketersediaan dan kebutuhan air di Daerah Aliran Sungai Cisangkuy, JITL, 20 (2), 57–62.

[6] Hendrasto, F., and Sunarwan, B., 2013 Pemanfaatan isotop lingkungan di daerah cekungan airtanah Bandung, Jurnal Teknik, 14 (2), 1–11.

[7] Pujiindiyati, E.R., Satrio, and Prasetio, R., 2019, Major ions for tracing leachate migration within shallow ground water in the vicinity of municipal landfill in Bantar Gebang –Bekasi, Indones. J. Chem., 19 (1), 19–29.

[8] Krishnaraj, S., Murugesan, V., Vijayaraghavan, K., Sabarathinam, C., Paluchamy, A., and Ramachandran, M., 2011, Use of hydrochemistry and stable isotopes as tools for groundwater evolution and contamination investigations, Geosciences, 1 (1), 16–25.

[9] Wu, H., Chen, J., Qian, H., and Zhang, X., 2015, Chemical characteristics and quality assessment of groundwater of exploited aquifers in Beijiao water source of Yinchuan, China: A case study for drinking, irrigation, and industrial purposes, J. Chem., 2015, 726340.

[10] Hendarmawan, 2002, Unconfined aquifer system of volcanics in the northern part of Bandung basin, West Java, Indonesia, J. Geosci., Osaka City Univ., 45, 1–12.

[11] Delinom, R.M., and Suriadarma, A., 2010, Groundwater flow system of Bandung basin based on hydraulic head, subsurface temperature, and stable isotopes, JRGP, 20 (1), 55–68.

[12] Iskandar, I., Notosiswoyo, S., Purnandi, C., and Pasaribu, T., 2013, Type and origin of springs and hotsprings at surrounding ridges of Bandung basin, related with its potential natural contamination, Procedia Earth Planet. Sci., 6, 262–268.

[13] Sunarwan, B., 2011, Penentuan satuan hidrostratigrafi (HSU) di daerah volkanik (Studi kasus: Daerah cekungan Bandung), Jurnal Teknik, 12 (2), 44–56.

[14] Oktaviany, V., Hutabarat, J., and Haryanto, A.D., 2017, Estimasi temperatur bawah permukaan berdasarkan kehadiran mineral alterasi pada sumur ‘X’ lapangan panas bumi Wayang Windu, Pangalengan, Kabupaten Bandung, Provinsi Jawa Barat, Bul. Sumber Daya Geol., 12 (2), 123–133.

[15] Taufiq, A., Effendi, A.J., Iskandar, I., Hosono, T., and Hutasoit, L.M., 2019, Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters, Water Res., 148, 292–305.

[16] Suhendar, R., Hadian, M.S.D., Muljana, Setiawan, T., and Hendarmawan, 2020, Geochemical evolution and groundwater flow system in Batujajar groundwater basin area, West Java, Indonesia, Indones. J. Geosci., 7 (1) 87–104.

[17] Matahelumual, B.C., and Wahyudin, 2010, Penelitian hidrogeologi daerah imbuhan air tanah dengan metode isotop dan hidrokimia di cekungan air tanah Bandung- Soreang, Provinsi Jawa Barat (Tahap III), Field Report, Pusat Vulkanologi dan Mitigasi Bencana Geologi, Badan Geologi, Bandung, Indonesia.

[18] Bronto, S., Koswara, A., and Lumbanbatu, K., 2006, Stratigrafi gunung api daerah Bandung Selatan, Jawa Barat, Indones. J. Geosci., 1 (2), 89–101.

[19] Silitonga, P.H., 1973, Geologic Map of the Bandung Quadrangle, Java, scale 1:100.000, Geological Agency of the Ministry of Energy and Mineral Resources, Bandung, Indonesia.

[20] Alzwar, M., Akbar, N., and Bachri S., 1992, Peta geologi lembar Garut dan Pemeungpeuk, Jawa, Pusat Penelitian dan Pengembangan Geologi, Bandung, Indonesia.

[21] Clark, I., 2015, Groundwater Geochemistry and Isotopes, 1st Ed., CRC Press, Boca Raton, Florida, US.

[22] Freeze, R.A., and Cherry, J.A., 1979, Groundwater, Prentice Hall, Inc., Englewood Cliffs, New Jersey.

[23] Ahamed, A.J., Loganathan, K., Ananthakrishnan, S., Ahmed, J.K.C., and Ashraf, M.A., 2016, Evaluation of graphical and multivariate statistical methods for classification and evaluation of groundwater in Alathur block, Perambalur District, India, Appl. Ecol. Environ. Res., 15 (3), 105–116.

[24] Gaikwad, S., Gaikwad, S., Meshram, D., Wagh, V., Kandekar, A., and Kadam, A., 2020, Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: Implication to groundwater quality, Environ. Dev. Sustain., 22 (3), 2591–2624.

[25] Pujiindiyati, E.R., Sidauruk, P., Prayogi, T.E., and Abdillah, F., 2020, Hydrochemical evolution in Ciliwung River - Java, Indonesia: Study of sea water mixture and mineral dissolution, Indones. J. Chem., 20 (6), 1360–1373.

[26] Mohamed, A.K., Liu, D., Song, K., Mohamed, M.A.A., Aldaw, E., and Elubid, B.A., 2019, Hydrochemical analysis and fuzzy logic method for evaluation of groundwater quality in the North Chengdu plain, China, Int. J. Environ. Res. Public Health, 16 (3), 302.

[27] Mook, W.G., 2001, Environmental Isotopes in the Hydrological Cycle: Principles and Applications, Volume I: Introduction: Theory, Methods, Review, International Atomic Energy Agency and United Nations Educational, Scientific and Cultural Organization.

[28] Coplen, T.B., Herczeg, A.L., and Barnes, C., 2000, “Isotope engineering—using stable isotopes of the water molecule to solve practical problems” in Environmental Tracers in Subsurface Hydrology, Springer, Boston, MA, 79–110.

[29] Kumar, P.J.S., and James, E.J., 2016, Identification of hydrogeochemical processes in the Coimbatore district, Tamil Nadu, India, Hydrol. Sci. J., 61 (4), 719–731.

[30] Setiawan, T., Alam, B.Y.C.S.S.S., Haryono, E., and Hendarmawan, 2020, Hydrochemical and environmental isotopes analysis for characterizing a complex karst hydrogeological system of Watuputih area, Rembang, Central Java, Indonesia, Hydrogeol. J., 28 (4), 1635–1659.

[31] Rusydi, A.F., Naily, W., and Lestiana, H., 2015, Domestic and Agricultural Waste Pollution of Shallow Groundwater in Bandung Regency, JRGP, 25 (2), 87–97.

[32] Kehew, A.E., 2001, Applied Chemical Hydrogeology, Prentice Hall, New Jersey.

[33] Paul, R., Brindha, K., Gowrisankar, G., Tan, M.L., and Singh, M.K., 2019, Identification of hydrogeochemical processes controlling groundwater quality in Tripura, Northeast India using evaluation indices, GIS, and multivariate statistical methods, Environ. Earth Sci., 78 (15), 470.

[34] Singh, A.K., Raj, B., Tiwari, A.K., and Mahato, M.K., 2013, Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi district of Bundelkhand region, India, Environ. Earth Sci., 70 (3), 1225–1247.

[35] Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, Water Supply Paper 2254, U.S. Geological Survey.



DOI: https://doi.org/10.22146/ijc.58633

Article Metrics

Abstract views : 673 | views : 421


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.