Polarity Effect on the Electronic Structure of Molybdenum Dichalcogenides MoXY (X, Y = S, Se): A Computational Study Based on Density-Functional Theory


Salsabila Amanda Putri(1*), Edi Suharyadi(2), Moh. Adhib Ulil Absor(3)

(1) Graduate School of Physics, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(2) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(3) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(*) Corresponding Author


Computational research based on the Density Functional Theory (DFT) has been performed to explore the electronic structure of monolayer material Transition Metal Dichalcogenides (TMDCs) Molybdenum Dichalcogenides MoXY (X; Y = S; Se) in the first Brillouin zone by breaking its mirror symmetry due to the polarity effect. Our study discovered that Rashba spin-splitting could be identified around the Γ point by proposing the polarity effect on the system. Moreover, the anisotropic characteristic of Rashba spin-splitting in this system can be explicitly analyzed by using  perturbation theory and the third-order symmetry group analysis. By performing the spin textures analysis, this research also recognizes the in-plane direction of spin textures. The tunable characteristic of the Rashba parameter of this monolayer polar MoSSe system under the strain effects control exhibits its potential to be the candidate of semiconductor material for the Spin Field Effect Transistor (SFET) device.


TMDCs; spin-splitting; polarity; DFT; Rashba; strain

Full Text:

Full Text PDF


[1] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., 2004, Electric field effect in atomically thin carbon films, Science, 306 (5696), 666–669.

[2] Partoens, B., and Peeters, F.M., 2006, From graphene to graphite: Electronic structure around the K point, Phys. Rev. B, 74 (7), 075404.

[3] Chen, C., Avila, J., Arezki, H., Yao, F., Nguyen, V.L., Lee, Y.H., Boutchich, M., and Asensio, M.C., 2017, Structural and electronic inhomogeneity of graphene revealed by Nano-ARPES, J. Phys. Conf. Ser., 864, 012029.

[4] Bertolazzi, S., Brivio, J., and Kis, A., 2011, Stretching and breaking of ultrathin MoS2, ACS Nano, 5 (12), 9703–9709.

[5] Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S., 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7 (11), 699–712.

[6] Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F., 2010, Atomically thin MoS2: A new direct gap semiconductor, Phys. Rev. Lett., 105 (13), 136805.

[7] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6 (3), 147–150.

[8] Kośmider, K., González, J.W., and Fernández-Rossier, J., 2013, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers, Phys. Rev. B, 88 (24), 245436.

[9] Zhu, Z.Y., Cheng, Y.C., and Schwingenschlögl, U., 2011, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Phys. Rev. B, 84 (15), 153402.

[10] Absor, M.A.U., Santoso, I., Harsojo, Abraha, K., Ishii, F., and Saito, M., 2017, Defect-induced large spin-orbit splitting in monolayer PtSe2, Phys. Rev. B, 96 (11), 115128.

[11] Chen, J., Wu, K., Ma, H., Hu, W., and Yang, J., 2020, Tunable Rashba spin splitting in Janus transition metal dichalcogenide monolayers via charge doping, RSC Adv., 10 (11), 6388–6394.

[12] Absor, M.A.U., Santoso, I., Harsojo, Abraha, K., Kotaka, H., Ishii, F., and Saito, M., 2018, Strong Rashba effect in the localized impurity states of halogen-doped monolayer PtSe2, Phys. Rev. B, 97 (20), 205138.

[13] Yuan, H., Bahramy, M.S., Morimoto, K., Wu, S., Nomura, K., Yang, B.J., Shimotani, H., Suzuki, R., Toh, M., Kloc, C., Xu, X., Arita, R., Nagaosa, N., and Iwasa, Y., 2013, Zeeman-type spin splitting controlled by an electric field, Nat. Phys., 9 (9), 563–569.

[14] Yao, Q. F., Cai, J., Tong, W.Y., Gong, S.J., Wang, J.Q., Wan, X., Duan, C.G., and Chu, J.H., 2017, Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides, Phys. Rev. B, 95 (16), 165401.

[15] Hu, T., Jia, F., Zhao, G., Wu, J., Stroppa, A., and Ren, W., 2018, Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers, Phys. Rev. B, 97 (23), 235404.

[16] Absor, M.A.U., Kotaka, H., Ishii, F., and Saito, M., 2016, Strain-controlled spin splitting in the conduction band of monolayer WS2, Phys. Rev. B, 94 (11), 115131.

[17] Hanakata, P.Z., Rodin, A.S., Park, H.S., Campbell, D.K., and Castro Neto, A.H., 2018, Strain-induced gauge and Rashba fields in ferroelectric Rashba lead chalcogenide Pb X monolayers (X = S, Se, Te), Phys. Rev. B, 97 (23), 235312.

[18] Zhou, B.T., Taguchi, K., Kawaguchi, Y., Tanaka, Y., and Law, K.T., 2019, Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides, Commun. Phys., 2 (1), 26.

[19] Kormányos, A., Zólyomi, V., Drummond, N.D., and Burkard, G., 2014, Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides, Phys. Rev. X, 4 (1), 011034.

[20] Rybkovskiy, D.V., Gerber, I.C., and Durnev, M.V., 2017, Atomically inspired k·p approach and valley Zeeman effect in transition metal dichalcogenide monolayers, Phys. Rev. B, 95 (15), 155406.

[21] Wang, T., Miao, S., Li, Z., Meng, Y., Lu, Z., Lian, Z., Blei, M., Taniguchi, T., Watanabe, K., Tongay, S., Smirnov, D., and Shi, S.F., 2019, Giant valley-Zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure, Nano Lett., 20 (1), 694–700.

[22] Zollner, K., Faria Junior, P.E., and Fabian, J., 2019, Proximity exchange effects in MoSe2 and WSe2 heterostructures with CrI3: Twist angle, layer, and gate dependence, Phys. Rev. B, 100 (8), 085128.

[23] Bychkov, Y.A., and Rashba, E.I., 1984, Properties of a 2D electron gas with lifted spectral degeneracy, J. Exp. Theor. Phys. Lett., 39, 78.

[24] Nitta, J., Akazaki, T., Takayanagi, H., and Enoki, T., 1997, Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure, Phys. Rev. Lett., 78 (7), 1335–1338.

[25] Rashba, E.I., and Sheka, V.I., 1959, Symmetry of energy bands in crystals of wurtzite type II. Symmetry of bands with spin-orbit interaction included, Fiz. Tverd. Tela, 2, 162–176.

[26] Affandi, Y., and Absor, M.A.U., 2019, Electric field-induced anisotropic Rashba splitting in two dimensional tungsten dichalcogenides WX2 (X: S, Se, Te): A first-principles study, Physica E, 114, 113611.

[27] Li, X., Chen, H., and Niu, Q., 2020, Out-of-plane carrier spin in transition-metal dichalcogenides under electric current, Proc. Natl. Acad. Sci. U. S. A., 117 (29), 16749–16755.

[28] Wang, J., Shu, H., Zhao, T., Liang, P., Wang, N., Cao, D., and Chen, X., 2018, Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides, Phys. Chem. Chem. Phys., 20 (27), 18571–18578.

[29] Absor, M.A.U., Santoso, I., Harsojo, Abraha, K., Kotaka, H., Ishii, F., and Saito, M., 2017, Polarity tuning of spin-orbit-induced spin splitting in two-dimensional transition metal dichalcogenides, J. Appl. Phys., 122 (15), 153905.

[30] Bai, H., Ma, J., Wang, F., Yuan, Y., Li, W., Mi, W., Han, Y., Li, Y., Tang, D., Zhao, W., Li, B., and Zhang, K., 2017, A controllable synthesis of uniform MoS2 monolayers on annealed molybdenum foils, Mater. Lett., 204, 35–38.

[31] Li, Y., Wang, F., Tang, D., Wei, J., Li, Y., Xing, Y., and Zhang, K., 2018, Controlled synthesis of highly crystalline CVD-derived monolayer MoSe2 and shape evolution mechanism, Mater. Lett., 216, 261–264.

[32] Chen, K., Wan, X., and Xu, J., 2017, Epitaxial stitching and stacking growth of atomically thin transition-metal dichalcogenides (TMDCs) heterojunctions, Adv. Funct. Mater., 27 (19), 1603884.

[33] Zhang, J., Jia, S., Kholmanov, I., Dong, L., Er, D., Chen, W., Guo, H., Jin, Z., Shenoy, V.B., Shi, L., and Lou, J., 2017, Janus monolayer transition-metal dichalcogenides, ACS Nano, 11 (8), 8192–8198.

[34] Lu, A.Y., Zhu, H., Xiao, J., Chuu, C.P., Han, Y., Chiu, M.H., Cheng, C.C., Yang, C.W., Wei, K.H., Yang, Y., Wang, Y., Sokaras, D., Nordlund, D., Yang, P., Muller, D.A., Chou, M.Y., Zang, X., and Li, L.J. 2017, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol., 12 (8), 744–749.

[35] Xiang, L., Ke, Y., and Zhang, Q., 2019, Tunable giant Rashba-type spin splitting in PtSe2/MoSe2 heterostructure, Appl. Phys. Lett., 115 (20), 203501.

[36] Din, H.U., Idrees, M., Albar, A., Shafiq, M., Ahmad, I., Nguyen, C.V., and Amin, B., 2019, Rashba spin splitting and photocatalytic properties of GeC–MSSe (M = Mo, W) van der Waals heterostructures, Phys. Rev. B, 100 (16), 165425.

[37] Chen, Y., and Washburn, J., 1996, Structural transition in large-lattice-mismatch heteroepitaxy, Phys. Rev. Lett., 77 (19), 4046–4049.

[38] Gabrys, P.A., Seo, S.E., Wang, M.X., Oh, E., Macfarlane, R.J., and Mirkin, C.A., 2018, Lattice mismatch in crystalline nanoparticle thin films, Nano Lett., 18 (1), 579–585.

[39] Perdew, J.P., Burke, K., and Ernzerhof, M., 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (18), 3865–3868.

[40] Ozaki, T., Kino, H., Yu, J., Han, M.J., Kobayashi, N., Ohfuti, M., Ishii, F., Ohwaki, T., Weng, H., and Terakura, K., 2009, OpenMX (Open source package for Material eXplorer) Version 3.8., http://www.openmx-square.org/

[41] Troullier, N., and Martins, J.L., 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43 (3), 1993–2006.

[42] Ozaki, T., 2003, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B, 67 (15), 155108.

[43] Ozaki, T., and Kino, H., 2004, Numerical atomic basis orbitals from H to Kr, Phys. Rev. B, 69 (19), 195113.

[44] Theurich, G., and Hill, N.A., 2001, Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials, Phys. Rev. B, 64 (7), 073106.

[45] Anshory, M., and Absor, M.A.U., 2020, Strain-controlled spin-splitting in the persistent spin helix state of two-dimensional SnSe monolayer, Physica E, 124, 114372.

[46] Absor, M.A.U., and Ishii, F., 2019, Intrinsic persistent spin helix state in two-dimensional group-IV monochalcogenide MX monolayers (M = Sn or Ge and X = S, Se, or Te), Phys. Rev. B, 100 (11), 115104.

[47] Absor, M.A.U., and Ishii, F., 2019, Doping-induced persistent spin helix with a large spin splitting in monolayer SnSe, Phys. Rev. B, 99 (7), 075136.

[48] Absor, M.A.U., Santoso, I., Yamaguchi, N., and Ishii, F., 2020, Spin splitting with persistent spin textures induced by the line defect in the 1T phase of monolayer transition metal dichalcogenides, Phys. Rev. B, 101 (15), 155410.

[49] Defo, R.K., Fang, S., Shirodkar, S.N., Tritsaris, G.A., Dimoulas, A., and Kaxiras, E., 2016, Strain dependence of band gaps and exciton energies in pure and mixed transition-metal dichalcogenides, Phys. Rev. B, 94 (15), 155310.

[50] Jin, W., Yeh, P.C., Zaki, N., Zhang, D., Liou, J.T., Sadowski, J.T., Barinov, A., Yablonskikh, M., Dadap, J.I., Sutter, P., Herman, I.P., and Osgood, Jr., R.M., 2015, Substrate interactions with suspended and supported monolayer MoS2: Angle-resolved photoemission spectroscopy, Phys. Rev. B, 91 (12), 121409.

[51] Vajna, S., Simon, E., Szilva, A., Palotas, K., Ujfalussy, B., and Szunyogh, L., 2012, Higher-order contributions to the Rashba-Bychkov effect with application to the Bi/Ag(111) surface alloy, Phys. Rev. B, 85 (7), 075404.

[52] Zhang, Y.J., Oka, T., Suzuki, R., Ye, J.T., and Iwasa, Y., 2014, Electrically switchable chiral light-emitting transistor, Science, 344 (6185), 725–728.

[53] Mak, K.F., McGill, K.L., Park, J., and McEuen, P.L., 2014, The valley Hall effect in MoS2 transistors, Science, 344 (6191), 1489–1492.

DOI: https://doi.org/10.22146/ijc.57949

Article Metrics

Abstract views : 920 | views : 553

Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.