Study of Mangosteen Peel (Garcinia mangostana L.) Waste Capability to Recover Au(III) and Ag(I) in Aqueous Solution

https://doi.org/10.22146/ijc.57670

Mellia Harumi(1*), Rian Kurniawan(2), Agustiwandina Saputri(3), Dian Hanna Saraswati(4), Meissha Ayu Ardini(5), Sri Sudiono(6)

(1) Department of Food Technology, Soegijapranata Catholic University, Jl. Pawiyatan Luhur IV/1 Bendan Dhuwur, Semarang 50234, Indonesia
(2) Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Electronic waste (e-waste) has been confirmed containing some precious metals such as gold and silver. Mangosteen peel waste as eco-friendly adsorbent has been studied to recover Au(III) and Ag(I) successfully. Recovery was started through adsorbent preparation, consisting of soxhlet extraction and maceration. About 100 mg of adsorbent was dispersed into Au(III) and Ag(I) solutions in various pH conditions (2–6). The result proves that the optimum adsorptions of Au(III) and Ag(I) are at pH 2 and pH 6, respectively. Au(III) adsorption follows the isotherm model of Langmuir with a maximum capacity of 0.580 mmol/g (114.27 mg/g). Ag(I) adsorption follows the isotherm model of Freundlich with a maximum capacity of 0.511 mmol/g (55.10 mg/g).


Keywords


mangosteen; recovery; Au(III); Ag(I); adsorption

Full Text:

Full Text PDF


References

[1] Gurung, M., Adhikari, B.B., Kawakita, H., Ohto, K., Inoue, K., and Alam, S., 2013, Recovery of gold and silver from spent mobile phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin, Hydrometallurgy, 133, 84–93.

[2] Adhikari, B.B., Gurung, M., Alam, S., Tolnai, B., and Inoue, K., 2013, Kraft mill lignin - A potential source of bio-adsorbents for gold recovery from acidic chloride solution, Chem. Eng. J., 231, 190–197.

[3] Syed, S., 2012, Recovery of gold from secondary sources-A review, Hydrometallurgy, 115-116, 30–51.

[4] Chen, X., Lam, K.F., Mak, S.F., and Yeung, K.L., 2011, Precious metal recovery by selective adsorption using biosorbents, J. Hazard. Mater., 186 (1), 902–910.

[5] Syed, S., 2016, Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling, Waste Manage., 50, 234–256.

[6] Won, S.W., Kotte, P., Wei, W., Lim, A., and Yun, Y.S., 2014, Biosorbents for recovery of precious metals, Bioresour. Technol., 160, 203–212.

[7] Das, N., 2010, Recovery of precious metals through biosorption – A review, Hydrometallurgy, 103 (1-4), 180–189.

[8] Harumi, M., Santosa, S.J., and Nuryono, 2019, Recovery of Au(III) from printed circuit board waste by chitosan/SiO2 coated on iron sand magnetic material, Mater. Today: Proc., 19, 1101–1110.

[9] Mack, C., Wilhelmi, B., Duncan, J.R., and Burgess, J.E., 2007, Biosorption of precious metals, Biotechnol. Adv., 25, 264–271.

[10] Sudiono, S., Yuniarti, M., Siswanta, D., Kunarti, E.S., and Santosa, S.J., 2017, The role of carboxyl and hydroxyl groups of humic acid in removing AuCl4 from aqueous solution, Indones. J. Chem., 17 (1), 95–104.

[11] Thong, N.M., Quang, D.T., Bui, N.H.T., Dao, D.Q., and Nam, P.C., 2015, Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (mangosteen): A theoretical study, Chem. Phys. Lett., 625, 30–35.

[12] Jung, H.A., Su, B.N., Keller, W.J., Mehta, R.G., and Kinghorn, A.D., 2006, Antioxidant xanthones from the pericarp of Garcinia mangostana (mangosteen), J. Agric. Food Chem., 54 (6), 2077–2082.

[13] Pedraza-Chaverri, J., Cárdenas-Rodríguez, N., Orozco-Ibarra, M., and Pérez-Rojas, J.M., 2008, Medicinal properties of mangosteen (Garcinia mangostana), Food Chem. Toxicol., 46 (10), 3227–3239.

[14] Sasikala, S., Radhaisri, S., and Kumar, D., 2018, Analysis of physio-chemical properties of mangosteen rind extract from industrial waste, Int. J. Trend Sci. Res. Dev., 2 (6), 1522–1526.

[15] Dewi, I.G.A.K.S.P., Manuaba, I.B.P., Yasa, I.W.P.S., and Satriyasa, B.K., 2018, Methanol extract of mangosteen peel (Garcinia mangostana L.) increase activity acetylcholinesterase and glutathione peroxidase and reduce MDA in diazinon exposed rat, Bali Med. J., 7 (3), 741–743.

[16] Zhou, H., Lin, Y.M., Wei, S.D., and Tam, N.F., 2011, Structural diversity and antioxidant activity of condensed tannins fractionated from mangosteen pericarp, Food Chem., 129 (4), 1710–1720.

[17] Jaisupa, N., Moongkarndi, P., Lomarat, P., Samer, J., Tunrungtavee, V., Muangpaisan, W., and Mangmool, S., 2018, Mangosteen peel extract exhibits cellular antioxidant activity by induction of catalase and heme oxygenase-1 mRNA expression, J. Food Biochem., 42 (3), e12511.

[18] Suttirak, W., and Manurakchinakorn, S., 2014, In vitro antioxidant properties of mangosteen peel extract, J. Food Sci. Technol., 51 (12), 3546–3558.

[19] Zarena, A.S., and Sankar, K.U., 2009, A Study of antioxidant properties from Garcinia mangostana L. pericarp extract, Acta Sci. Pol. Technol. Aliment., 8 (1), 23–34.

[20] Rohman, A., Rafi, M., Alam, G., Muchtaridi, M., and Windarsih, A., 2019, Chemical composition and antioxidant studies of underutilized part of mangosteen (Garcinia mangostana L.) fruit, J. Appl. Pharm. Sci., 9 (8), 47–52.

[21] Zein, R., Suhaili, R., Earnestly, F., Indrawati, and Munaf, E., 2010, Removal of Pb(II), Cd(II) and Co(II) from aqueous solution using Garcinia mangostana L. fruit shell, J. Hazard. Mater., 181 (1-3), 52–56.

[22] Huang, K., Xiu, Y., and Zhu, H., 2013, Selective removal of Cr(VI) from aqueous solution by adsorption on mangosteen peel, Environ. Sci. Pollut. Res., 20 (9), 5930–5938.

[23] Huang, K., Xiu, Y., and Zhu, H., 2014, Removal of heavy metal ions from aqueous solution by chemically modified mangosteen pericarp, Desalin. Water Treat., 52 (37-39), 7108–7116.

[24] Harumi, M., Saraswati, D.H., Triyono, T., and Sudiono, S., 2020, Isotherm and thermodynamics adsorption of Au(III) ion by mangosteen rind (Garcinia mangostana L.), Key Eng. Mater., 840, 16–21.

[25] Nasrullah, A., Saad, B., Bhat, A.H., Khan, A.S., Danish, M., Isa, M.H., and Naeem, A., 2019, Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: Characterization and application for methylene blue removal, J. Cleaner Prod., 211, 1190–1200.

[26] Saraswati, D.H., Harumi, M., Triyono, T., and Sudiono, S., 2020, The effectiveness adsorption of Au(III) and Cu(II) ion by mangosteen rind (Garcinia mangostana L.) using point of zero charge calculation, Key Eng. Mater., 840, 10–15.

[27] Liu, F., Peng, G., Li, T., Yu, G., and Deng, S., 2019, Au(III) adsorption and reduction to gold particles on cost-effective tannin acid immobilized dialdehyde corn starch, Chem. Eng. J., 370, 228–236.



DOI: https://doi.org/10.22146/ijc.57670

Article Metrics

Abstract views : 1242 | views : 1147


Copyright (c) 2020 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.