Preparation, Electronic Properties, and Powder-XRD Structure Analysis of 3,5-Bis(pyridin-2-yl)-H-1,2,4-triazoledichloridocopper(II)

Kristian Handoyo Sugiyarto(1*), Isti Yunita(2), Harold Andrew Goodwin(3)

(1) Department of Chemistry Education, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta 55281, Indonesia
(2) Department of Chemistry Education, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta 55281, Indonesia
(3) School of Chemistry, UNSW, Sydney, NSW 2052, Australia
(*) Corresponding Author


Salt of [Cu(bptrzH)Cl2], (bptrzH = 3,5-bis(pyridin-2-yl)-H-1,2,4-triazole) has been prepared and characterized its electronic spectral and magnetic properties. This salt is paramagnetic with magnetic moment, μs, being 1.77–1.78 BM at 293 K, but decreased significantly with decreasing temperature to be 0.60–0.63 BM at 90 K, indicating antiferromagnetic nature. This is associated with Cu–Cu magnetic interactions at low temperatures, and suggests that the salt adopt an octahedrally polymeric structure. The electronic spectrum of this salt reveals a strong ligand field band centered at about 13,000 cm–1 and a very strong charge transfer absorption at about 23,000–24,000 cm–1. The spectrum is better resolved at lower temperature and this is parallel to the slight change in color from yellowish-green at room temperature to bright green at low temperature (90 K). The powder XRD of this complex was refined by Le Bail method of Rietica program and found to be fit as triclinic symmetry of space group PĪ with the figure of merit: Rp = 5.02; Rwp = 7.95; Rexp = 5.40; Bragg R-Factor = 0.05; and GOF = 2.166.


magnetic moment; copper(II); bptrzH; antiferromagnetic; spectrum; Rietica

Full Text:

Full Text PDF


[1] Willett, R.D., Haugen, J.A., Lebsack, J., and Morrey, J., 1974, Thermochromism in copper(II) chlorides. Coordination geometry changes in CuCl42– anions, Inorg. Chem., 13 (10), 2510–2513.

[2] Willett, R.D., Ferraro, J.R., and Choca, M., 1974, Pressure studies on the thermochromic salt [(CH3)2CHNH3]2CuCl4, a compound with three phases containing distinctly different CuCl42– stereochemical configurations, Inorg. Chem., 13 (12), 2919–2921.

[3] Ding, J., Li, H.S., Wen, L.W., Kang, X.B., Li, H.D., and Zhang, J.M., 2013, Electronic and magnetic properties of an organic multiferroic: (C2H5NH3)2CuCl4, J. Magn. Magn. Mater., 346, 91–95.

[4] Bhattacharya, R., Ray, M.S., Dey, R., Righi, L., Bocelli, G., and Ghosh, A., 2002, Synthesis, crystal structure and thermochromism of benzimidazolium tetrachlorocuprate: (C7H7N2)2[CuCl4], Polyhedron, 21 (25-26), 2561–2565.

[5] Fabbrizzi, L., Micheloni, M., and Paoletti, P., 1974, Continuous and discontinuous thermochromism of copper(II) and nickel(II) complexes with N,N-diethylethylenediamine, Inorg. Chem., 13 (12), 3019–3021.

[6] Hamdi, M., Oueslati, A., Chaabane, I., and Hlel, F., 2012, Characterization and electrical properties of [C6H9N2]2CuCl4 compound, ISRN Condens. Matter Phys., 2012, 750497.

[7] Lee, C.H., Lee, K.W., and Lee, C.E., 2003, Quasi-two-dimensional magnetism in (CnH2n+1NH3)2CuCl4 studied by electron paramagnetic resonance, Curr. Appl. Phys., 3 (6), 477–479.

[8] Zolfaghari, P., de Wijs, G.A., and de Groot, R.A., 2013, The electronic structure of organic-inorganic hybrid compounds: (NH4)2CuCl4, (CH3NH3)2CuCl4 and (C2H5NH3)2CuCl4, J. Phys. Condens. Matter, 25 (29), 295502.

[9] Aldrich, E.P., Bussey, K.A., Connell, J.R., Reinhart, E.F., Oshin, K.D., Mercado, B.Q., and Oliver, A.G., 2016, Crystal structure of the thermochromic bis(diethylammonium) tetrachloridocuprate(II) complex, Acta Cryst. E, 72 (1), 40–43.

[10] Vishwakarma, A.K., Kumari, R., Ghalsasi, P.S., and Arulsamy, N., 2017, Crystal structure, thermochromic and magnetic properties of organic-inorganic hybrid compound: (C7H7N2S)2CuCl4, J. Mol. Struct., 1141, 93–98.

[11] Kapustyanyk, V.B., and Korchak, Y.M., 2000, Thermochromic phase transition in [NH2(C2H5)2]2CuCl4 crystals, J. Appl. Spectrosc., 67 (6), 1045–1049.

[12] Zhang, L., Bu, W.M., Yan, S.P., Jiang, Z.H., Liao, D.Z., and Wang, G.L., 2000, Weaker magnetic interactions of oxalato-copper(II) binuclear compounds: Synthesis, spectroscopy, crystal structure and magnetism, Polyhedron, 19 (9), 1105–1110.

[13] Julve, M., Gleizes, A., Chamoreau, L.M., Ruiz, E., and Verdaguer, M., 2017, Antiferromagnetic interactions in copper(II) µ-oxalato dinuclear complexes: The role of the counterion, Eur. J. Inorg. Chem., 2018 (3-4), 509–516.

[14] Gusev, A.N., Nemec, I., Herchel, R., Shul’gin, V.F., Ryush, I., Kiskin, M., Efimov, N., Ugolkova, E., Minin, V., Lyssenko, K., Eremenko, I., and Linert, W., 2019, Copper(II) self-assembled clusters of bis((pyridin-2-yl)-1,2,4-triazol-3-yl)alkanes. Unusual rearrangement of ligand upon reaction condition, Dalton Trans., 48 (9), 3052–3060.

[15] Chaudhuri, P., Wagner, R., and Weyhermüller, T., 2007, Ferromagnetic vs antiferromagnetic coupling in bis(μ-phenoxo)dicopper(II) complexes. Tuning of the nature of exchange coupling by remote ligand substituents, Inorg. Chem., 46 (13), 5134–5136.

[16] Halcrow, M.A., 2013, Jahn-Teller distortions in transition metal compounds, and their importance in functional molecular and inorganic materials, Chem. Soc. Rev., 42 (4), 1784–1795.

[17] Chen, J.C., Hu, S., Zhou, A.J., Tong, M.L., and Tong, Y.X., 2006, Synthesis, crystal structures, and magnetic properties of three new iron complexes derived from 3,5-bis(pyridin-2-yl)-1,2,4-triazole, Z. Anorg. Allg. Chem., 632 (3), 475–481.

[18] Prins, R., Birker, P.J.M.W.L., Haasnoot, J.G., Verschoor, G.C., and Reedijk, J., 1985, Magnetic properties of dimeric disubstituted-triazole copper(II) compounds. X-ray structure of bis[μ-3,5-bis(pyridin-2-yl)-1,2,4-triazolato-N’,N1,N2,N"]-bis[aqua(trifluoromethanesulfonato-O)copper(II)], Inorg. Chem., 24 (24), 4128–4133.

[19] Kitchen, J.A., and Brooker, S., 2008, Spin crossover in iron(II) complexes of 3,5-di(2-pyridyl)-1,2,4-triazoles and 3,5-di(2-pyridyl)-1,2,4-triazolates, Coord. Chem. Rev., 252 (18-20), 2072–2092.

[20] Kubota, S., Uda, M., and Nakagawa, T., 1975, 1,2,4-Triazoles. V. Nuclear magnetic resonance study of N-methyl derivatives of 1,2,4-triazoles, J. Heterocycl. Chem., 12 (5), 855–860.

[21] Zhou, J.H., Cheng, R.M., Song, Y., Li, Y.Z., Yu, Z., Chen, X.T., Xue, Z.L., and You, X.Z., 2005, Syntheses, structures, and magnetic properties of unusual nonlinear polynuclear copper(II) complexes containing derivatives of 1,2,4-triazole and pivalate ligands, Inorg. Chem., 44 (22), 8011–8022.

[22] Aqeel, A., Akhtar, N., Polyakov, A.O., Rudolf, P., and Palstra, T.T.M., 2018, Magnetic functionality of thin film perovskite hybrids, APL Mater., 6 (11), 114206.

[23] Conradie, J., Conradie, M.M., Tawfiq, K.M., Coles, S.J., Tizzard, G.J., Wilson, C., and Potgieter, J.H., 2018, Jahn-Teller distortion in 2-pyridyl-(1,2,3)-triazole-containing copper(II) compounds, New J. Chem., 42 (19), 16335–16345.

[24] Scăețeanu, G.V., Chifiriuc, M.C., Bleotu, C., Kamerzan, C., Măruţescu, L., Daniliuc, C.G., Maxim, C., Calu, L., Olar, R., and Badea, M., 2018, Synthesis, structural characterization, antimicrobial activity, and in vitro biocompatibility of new unsaturated carboxylate complexes with 2,2′-bipyridine, Molecules, 23 (1), 157.

[25] Aughterson, R.D., Lumpkin, G.R., de los Reyes, M., Sharma, N., Ling, C.D., Gault B., Smith, K.L., Avdeev, M., and Cairney, J.M., 2014, Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2-x)TiO5 series, J. Solid State Chem., 213, 182–192.

[26] Lüdtke, T., Weber, D., Schmidt, A., Müller, A., Reimann, C., Becker, N., Bredow, T., Dronskowski, R., Ressler, T., and Lerch, M., 2017, Synthesis and characterization of metastable transition metal oxides and oxide nitrides, Z. Kristallogr. Cryst. Mater., 232 (1-3), 3–14.

[27] Purwaningsih, S.Y., Rosidah, N., Zainuri, M., Triwikantoro, T., Pratapa, S., and Darminto, D., 2019, Comparation of X-ray diffraction pattern refinement using Rietica and MAUD of ZnO nanoparticles and nanorods, J. Phys. Conf. Ser., 1153, 012070.

[28] Grosjean, A., Négrier, P., Bordet, P., Etrillard, C., Mondieig, D., Pechev, S., Lebraud, E., Létard, J.F., and Guionneau, P., 2012, Crystal structures and spin crossover in the polymeric material [Fe(Htrz)2(trz)](BF4) including coherent-domain size reduction effects, Eur. J. Inorg. Chem., 2013 (5-6), 796–802.

[29] Toby, B.H., 2006, R factors in Rietveld analysis: How good is good enough?, Powder Diffr., 21 (1), 67–70.

[30] Sugiyarto, K.H., Saputra, H.W., Permanasari, L., and Kusumawardani, C., 2017, Structural analysis of powder complex of [Mn(phen)3](CF3SO3)2·6.5H2O, AIP Conf. Proc., 1847, 040006.

[31] Kusumawardani, C., Permanasari, L., Fatonah S.D., and Sugiyarto, K.H., 2017, Structural analysis of powder complex of tris(1,10-phenanthroline)copper(II) trifluoromethane sulfonate dihydrate, Orient. J. Chem., 33 (6), 2841–2847.

[32] Kusumawardani, C., Kainastiti, F., and Sugiyarto, K.H., 2018, Structural analysis of powder complex of [Cu(bipy)3](CF3SO3)2(H2O)x (x = 0.5, 1), Chiang Mai J. Sci., 45 (4),1944–1952.

[33] Sutrisno, H., Kusumawardani, C., Rananggana, R.Y., and Sugiyarto, K.H., 2018, Structural analysis of powder tris(phenanthroline)nickel(II) trifluoro acetate, Chiang Mai J. Sci., 45 (7), 2768–2778.

[34] Sugiyarto, K.H., Kusumawardani, C., Sutrisno, H., and Wibowo, M.W.A., 2018, Structural analysis of powdered manganese(II) of 1,10-phenanthroline (phen) as ligand and trifluoroacetate (TFA) as counter anion, Orient. J. Chem., 34 (2), 735–742.

[35] Sugiyarto, K.H., Kusumawardani, C., and Wulandari, K.E., 2018, Synthesis and structural analysis of powder complex of tris(bipyridine)cobalt(II) trifluoromethanesulfonate octahydrate, Indones. J. Chem., 18 (4), 696–701.

[36] Sugiyarto, K.H., Kusumawardani, C., Wigati, H., and Sutrisno, H., 2019, Structural study of the powder complex of Cu(II)-1,10-phenanthroline-trifluoroacetate, Orient. J. Chem., 35 (1), 325–331.

[37] Louise, I.S.Y., Nabila, S., and Sugiyarto, K.H., 2019, Complex of tris(phenanthroline)cobalt(II) trifluoroacetate: Characterisation and powder XRD analysis, Orient. J. Chem., 35 (5), 1500–1507.

[38] Sugiyarto, K.H., Louise, I.S.Y., and Wilujeng, S.S., 2020, Preparation and powder XRD analysis of tris(2,2’-bipyridine)nickel(II) trifluoroacetate, Indones. J. Chem., 20 (4), 833–841.


Article Metrics

Abstract views : 71 | views : 89

Copyright (c) 2020 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.