Statistical Study on the Interaction Factors of Polypropylene-Graft-Maleic Anhydride (PP-g-MA) with Graphene Nanoplatelet (GNP) at Various Poly(Lactic Acid)/Polypropylene (PLA/PP) Blends Ratio
Farah Hafidzah(1), Mohd Bijarimi(2*), Waleed Alhadadi(3), Suriyati Salleh(4), Mohammad Norazmi(5), Erna Normaya(6)
(1) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
(2) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
(3) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
(4) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
(5) Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
(6) Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
(*) Corresponding Author
Abstract
This paper reports the effects of polypropylene-graft-maleic anhydride (PP-g-MA) and graphene nanoplatelet (GNP on tensile stress of various PLA/PP weight ratio. The PLA/PP blends prepared with the ratio 70/30, 80/20, and 90/10 with the addition of PP-g-MA (1 to 5 phr) and GNP (1 to 3 phr) by using an injection molding machine. The tensile stress (MPa) was analyzed based on 11 runs of full factorial design. The results showed that the tensile stress of PLA/PP blends gradually increased after the addition of PP-g-MA and GNP. There is a relationship between PP-g-MA and GNP which causes a positive impact on the mechanical properties of PLA/PP blends. The optimum tensile stress of 50.06 MPa achieved at the ratio of 90/10 blends with 5 phr of PP-g-MA and 3 phr of GNP.
Keywords
Full Text:
Full Text PDFReferences
[1] Sui, G., Jing, M., Zhao, J., Wang, K., Zhang, Q., and Fu, Q., 2018, A comparison study of high shear force and compatibilizer on the phase morphologies and properties of polypropylene/polylactide (PP/PLA) blends, Polymer, 154, 119–127.
[2] Rajan, K.P., Thomas, S.P., Gopanna, A., Al-Ghamdi, A., and Chavali, M., 2018, Rheology, mechanical properties and thermal degradation kinetics of polypropylene (PP) and polylactic acid (PLA) blends, Mater. Res. Express, 5 (8), 085304.
[3] Deng, Y., Yu, C., Wongwiwattana, P., and Thomas, N.L., 2018, Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology, J. Polym. Environ., 26 (9), 3802–3816.
[4] Bijarimi, M., Amirul, M., Norazmi, M., Ramli, A., Desa, M.S.Z., Anuar Desa, M.D., and Abu Samah, M.A., 2019, Preparation and characterization of poly (lactic acid) (PLA)/polyamide 6 (PA6)/graphene nanoplatelet (GNP) blends bio-based nanocomposites, Mater. Res. Express, 6 (5), 055044.
[5] Anstey, A., Codou, A., Misra, M., and Mohanty, A.K., 2018, Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): Fractionated crystallization phenomena and mechanical performance, ACS Omega, 3 (3), 2845–2854.
[6] Zhang, K., Nagarajan, V., Misra, M., and Mohanty, A.K., 2014, Supertoughened renewable PLA reactive multiphase blends system: Phase morphology and performance, ACS Appl. Mater. Interfaces, 6 (15), 12436–12448.
[7] Tengsuthiwat, J., Asawapirom, U., Siengchin, S., and Karger-Kocsis, J., 2018, Mechanical, thermal, and water absorption properties of melamine–formaldehyde-treated sisal fiber containing poly(lactic acid) composites, J. Appl. Polym. Sci., 135 (2), 45681.
[8] Nehra, R., Maiti, S.N., and Jacob, J., 2018, Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends, J. Appl. Polym. Sci., 135 (1), 45644.
[9] Pivsa-Art, S., Kord-Sa-Ard, J., Pivsa-Art, W., Wongpajan, R., O-Charoen, N., Pavasupree, S., and Hamada, H., 2016, Effect of compatibilizer on PLA/PP blend for injection molding, Energy Procedia, 89, 353–360.
[10] Lee, T.W., and Jeong, Y.G., 2014, Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes, Compos. Sci. Technol., 103, 78–84.
[11] Choudhary, P., Mohanty, S., Nayak, S.K., and Unnikrishnan, L., 2011, Poly(L-lactide)/polypropylene blends: Evaluation of mechanical, thermal, and morphological characteristics, J. Appl. Polym. Sci., 121 (6), 3223–3237.
[12] Chen, R., Zou, W., Zhang, H., Zhang, G., Yang, Z., and Qu, J., 2015, Poly(lactic acid)/polypropylene and compatibilized poly(lactic acid)/polypropylene blends prepared by a vane extruder: Analysis of the mechanical properties, morphology and thermal behavior, J. Polym. Eng., 35 (8), 753–764.
[13] Ebadi-Dehaghani, H., Khonakdar, H.A., Barikani, M., Jafari, S.H., Wagenknecht, U., and Heinrich, G., 2016, An investigation on compatibilization threshold in the interface of polypropylene/polylactic acid blends using rheological studies, J. Vinyl Addit. Technol., 22 (1), 19–28.
[14] Yoo, T.W., Yoon, H.G., Choi, S.J., Kim, M.S., Kim, Y.H., and Kim, W.N., 2010, Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends, Macromol. Res., 18 (6), 583–588.
[15] Lee, H.S., and Kim, J.D., 2012, Effect of a hybrid compatibilizer on the mechanical properties and interfacial tension of a ternary blend with polypropylene, poly(lactic acid), and a toughening modifier, Polym. Compos., 33 (7), 1154–1161.
[16] He, Q., Yuan, T., Zhang, X., Luo, Z., Haldolaarachchige, N., Sun, L., Young, D.P., Wei, S., and Guo, Z., 2013, Magnetically soft and hard polypropylene/cobalt nanocomposites: Role of maleic anhydride grafted polypropylene, Macromolecules, 46 (6), 2357–2386.
[17] Ploypetchara, N., Suppakul, P., Atong, D., and Pechyen, C., 2014, Blend of polypropylene/poly(lactic acid) for medical packaging application: Physicochemical, thermal, mechanical, and barrier properties, Energy Procedia, 56, 201–210.
[18] Zawawi, E.Z.E., Romli, A.Z., Suli, S.F.M., and Isnin, M.A., 2018, The effect of MAPP compatibilizing agent on the mechanical and thermal properties of polypropylene/PLA blends, IJET, 7 (4.14), 361–364.
[19] Wang, X., Liu, W., Li, H., Du, Z., and Zhang, C., 2016, Role of maleic- anhydride-grafted- polypropylene in supercritical CO 2 foaming of poly (lactic acid) and its effect on cellular morphology, J. Cell. Plast., 52 (1), 37–56.
[20] Nofar, M., Salehiyan, R., Ciftci, U., Jalali, A., and Durmuş, A., 2020, Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay, Composites, Part B, 182, 107661.
[21] Bijarimi, M., Shahadah, N., Ramli, A., Nurdin, S., Alhadadi, W., Muzakkar, M.Z., and Jaafar, J., 2020, Poly(lactic acid) (PLA)/acrylonitrile butadiene styrene (ABS) with graphene nanoplatelet (GNP) nanocomposites, Indones. J. Chem., 20 (2), 276–281.
[22] Alhadadi, W., Almaqtari, A., Hafidzah, A., Bijarimi, M., Desa, M.S.Z., Merzah, H., Normaya, E., and Norazmi, M., 2019, Thermal stability of melt-blended poly (lactic acid) (PLA)/polyamide 66 (PA66)/graphene nanoplatelets (GnP), IOP Conf. Ser.: Mater. Sci. Eng., 702 (1), 012037.
[23] Ebadi-Dehaghani, H., Khonakdar, H.A., Barikani, M., and Jafari, S.H., 2015, Experimental and theoretical analyses of mechanical properties of PP/PLA/clay nanocomposites, Composites, Part B, 69, 133–144.
[24] Mandal, D.K., Bhunia, H., and Bajpai, P.K., 2019, Thermal degradation kinetics of PP/PLA nanocomposite blends, J. Thermoplast. Compos. Mater., 32 (12), 1714–1730.
[25] Azizi, S., Azizi, M., and Sabetzadeh, M., 2019, The role of multiwalled carbon nanotubes in the mechanical, thermal, rheological, and electrical properties of PP/PLA/MWCNTs nanocomposites, J. Compos. Sci., 3 (3), 64.
[26] Nuñez, K., Rosales, C., Perera, R., Villarreal, N., and Pastor, J.M., 2011, Nanocomposites of PLA/PP blends based on sepiolite, Polym. Bull., 67 (9), 1991–2016.
[27] Shrivastava, N.K., Wooi, O.S., Hassan, A., and Inuwa, I.M., 2018, Mechanical and flammability properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends and nanocomposites: Effects of compatibilizer and graphene, Malays. J. Fundam. Appl. Sci., 14 (4), 425–431.
[28] Kashi, S., Gupta, R.K., Kao, N., Hadigheh, S.A., and Bhattacharya, S.N., 2018, Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices, J. Mater. Sci. Technol., 34 (6), 1026–1034.
[29] Kausar, A., and Ur Rahman, A., 2016, Effect of graphene nanoplatelet addition on properties of thermo-responsive shape memory polyurethane-based nanocomposite, Fullerenes Nanotubes Carbon Nanostruct., 24 (4), 235–242.
[30] Tu, C., Nagata, K., and Yan, S., 2017, Influence of melt-mixing processing sequence on electrical conductivity of polyethylene/polypropylene blends filled with graphene, Polym. Bull., 74 (4), 1237–1252.
[31] Ajorloo, M., Fasihi, M., Ohshima, M., and Taki, K., 2019, How are the thermal properties of polypropylene/graphene nanoplatelet composites affected by polymer chain configuration and size of nanofiller?, Mater. Des., 181, 108068.
[32] Ahmad, S.R., Xue, C., and Young, R.J., 2017, The mechanisms of reinforcement of polypropylene by graphene nanoplatelets, Mater. Sci. Eng., B, 216, 2–9.
[33] Vadori, R., Misra, M., and Mohanty, A.K., 2017, Statistical optimization of compatibilized blends of poly(lactic acid) and acrylonitrile butadiene styrene, J. Appl. Polym. Sci., 134 (9), 44516.
[34] Brandenburg, R.F., Lepienski, C.M., Becker, D., and Coelho, L.A.F., 2017, Influence of mixing methods on the properties of high density polyethylene nanocomposites with different carbon nanoparticles, Matéria, 22 (4), e-11888.
[35] Ghasemi, F.A., Daneshpayeh, S., and Ghasemi, I., 2017, Multi-response optimization of impact strength and elongation at break of nanocomposites based on polypropylene/polyethylene binary polymer matrix in the presence of titanium dioxide nanofiller, J. Elastomers Plast., 49 (8), 633–649.
[36] Dzul-Cervantes, M., Herrera-Franco, P.J., Tábi, T., and Valadez-Gonzalez, A., 2017, Using factorial design methodology to assess PLA-g-Ma and henequen microfibrillated cellulose content on the mechanical properties of poly(lactic acid) composites, Int. J. Polym. Sci., 2017, 4046862.
[37] Codou, A., Anstey, A., Misra, M., and Mohanty, A.K., 2018, Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): Morphology evolution and rheological behaviour, RSC Adv., 8 (28), 15709–15724.
[38] Jariyakulsith, P., and Puajindanetr, S., 2018, Relationship between compatibilizer and yield strength of PLA/PP Blend, IOP Conf. Ser.: Mater. Sci. Eng., 303, 012004.
[39] Inuwa, I.M., Hassan, A., and Shamsudin, S.A., 2014, Thermal properties, structure and morphology of graphene reinforced polyethylene terephthalate/polypropylene nanocomposites, Malays. J. Anal. Sci., 18 (2), 466–477.
[40] Al-Saleh, M.A., Yussuf, A.A., Al-Enezi, S., Kazemi, R., Wahit, M.U., Al-Shammari, T., and Al-Banna, A., 2019, Polypropylene/graphene nanocomposites: Effects of GNP loading and compatibilizers on the mechanical and thermal properties, Materials, 12 (23), 3924.
DOI: https://doi.org/10.22146/ijc.54036
Article Metrics
Abstract views : 2845 | views : 2277Copyright (c) 2020 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.