Isotope and Geochemistry Characterization of Hot Springs and Cold Springs of Sembalun – Rinjani Area, East Lombok, West Nusa Tenggara – Indonesia

https://doi.org/10.22146/ijc.50790

Satrio Satrio(1*), Rasi Prasetio(2), Boy Yoseph Cahya Sunan Sakti Syah Alam(3), Teuku Yan Waliyana Muda Iskandarsyah(4), Faizal Muhammadsyah(5), Mohamad Sapari Dwi Hadian(6), Hendarmawan Hendarmawan(7)

(1) Center for Isotopes and Radiation Application – BATAN, Jl. Lebak Bulus Raya No. 49, Jakarta 12440 Indonesia
(2) Center for Isotopes and Radiation Application – BATAN, Jl. Lebak Bulus Raya No. 49, Jakarta 12440 Indonesia
(3) Faculty of Geological Engineering, Padjadjaran University, Jl. Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363 Indonesia
(4) Faculty of Geological Engineering, Padjadjaran University, Jl. Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363 Indonesia
(5) Faculty of Geological Engineering, Padjadjaran University, Jl. Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363 Indonesia
(6) Faculty of Geological Engineering, Padjadjaran University, Jl. Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363 Indonesia
(7) Faculty of Geological Engineering, Padjadjaran University, Jl. Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363 Indonesia
(*) Corresponding Author

Abstract


The presence of several hot springs in Sembalun – Rinjani, East Lombok, West Nusa Tenggara is an indicator of geothermal potential in the area. This study aims to determine the characteristics of hot springs and cold springs and also the geothermal potential in Sembalun – Rinjani area using isotopes and geochemistry methods. The result of d18O and d2H stable isotopes analysis shows that most of the hot springs are meteoric water. Except for Kalak hot spring, other hot springs are a mixing product of meteoric water and andesitic water, with meteoric water composition between 64 to 87%. While 14C radioisotope suggests that the age of hot springs in the Sembalun area is about 10,000–12,000 years BP, the surrounding cold springs are mostly Modern except Jorong cold spring. The results of gas analysis (He, Ar, and Ne) also suggest the same origin of geothermal fluid, i.e., meteoric water origin. Based on chemical composition, Kalak hot spring is plotted as sulfate type water, while Sebau hot spring is plotted near mature water composition but not representing reservoir fluid due to its relatively low temperature and high Mg content. Na/K geothermometer calculation from Sembalun area shows that subsurface temperature is varied between 111-161 °C, while from Rinjani hot springs indicates higher subsurface temperature, i.e., 250-260 °C. It is estimated that reservoir fluid has high TDS with chloride content up to 4000 mg/L.


Keywords


geothermal; Sembalun – Rinjani; hot spring; cold spring; isotope; geochemistry; geothermometer

Full Text:

Full Text PDF


References

[1] Sundhoro, H., Kasbani, Yushantarti, A., and Hadi, M.N., 2007, Penyelidikan geologi dan geokimia daerah panas bumi Sembalun, Kabupaten Lombok Timur – Nusa Tenggara Barat, Proceeding Pemaparan Hasil Kegiatan Lapangan dan Non Lapangan Tahun 2007, Pusat Sumber Daya Geology, 1–7.

[2] Chenaker, H., Houha, B., and Valles, V., 2017, Isotope studies and chemical investigations of hot springs from North-Eastern Algeria, J. Mater. Environ. Sci., 8 (12), 4253–4263.

[3] Mwangi, S.M., 2013, Application of geochemical methods in geothermal exploration in Kenya, Procedia Earth Planet. Sci., 7, 602–606.

[4] Cabrera, A., Blarasin, M., and Maldonado, L., 2017, Groundwater age and hydrothermalism of confined aquifers in the Argentine Pampean plain, Geotherm. Energy, 5, 6.

[5] Bouchaou, L., Warner, N.R., Tagma, T., Hssaisoune, M., and Vengosh, V., 2017, The origin of geothermal waters in Morocco: Multiple isotope tracers for delineating sources of water-rock interactions, Appl. Geochem., 84, 244–253.

[6] Hou, Y., Shi, Z., and Mu, W., 2018, Fluid geochemistry of fault zone hydrothermal system in the Yidun-Litang area, eastern Tibetan Plateau geothermal belt, Geofluids, 2018, 6872563.

[7] Hadi, M.N., Yushantarti, A., Suhanto, E., and Sundhoro, H., 2007, Survei panas bumi terpadu (geologi, geokimia dan geofisika) daerah Sembalun, Kabupaten Lombok Timur – NTB, Proceeding Pemaparan Hasil Kegiatan Lapangan dan Non Lapangan Tahun 2007, Pusat Sumber Daya Geology, 1–14.

[8] Clark, I.D., and Fritz, P., 1997, Environmental Isotopes in Hydrogeology, CRC Press, Boca Raton, Florida, 285.

[9] Wijatna, A.B., Kayyis, M., Satrio, and Pujiindiyati, E.R., 2019, Study of seawater intrusion in deep aquifers of Semarang coast using natural isotopes and hydrochemical, Indones. J. Geosci., 6 (1), 17–28.

[10] Aggarwal, P.K., Araguas-Araguas, L., Choudhry, M., van Duren, M., and Froehlich, K., 2013, Lower groundwater 14C age by atmospheric CO2 uptake during sampling and analysis, Groundwater, 52 (1), 20–24.

[11] Joseph, E.P., Fournier, N., Lindsay, J.M., Robertson, R., and Beckles, D.M., 2013, Chemical and isotopic characteristics of geothermal fluids from Sulphur Springs, Saint Lucia, J. Volcanol. Geotherm. Res., 254, 23–36.

[12] Marini, L., 2000, Geochemical techniques for the exploration and exploitation of geothermal energy, Department for the Study of Territory and its Resources, University of Genoa, Corso Europa 26, 16132, Genoa, Italy, 1–82.

[13] Muhammad, S.B., and Sadiq, U., 2014, Analysis of stable isotopic composition of precipitation in Katsina State in Nigeria as an indication of water cycle, Adv. Phys. Theor. Appl., 33, 28–34.

[14] Hendriksson, N., Karhu, J., and Niinikoski, P., 2014, 18O, 2H and 3H Isotopic Composition of Precipitation and Shallow Groundwater in Olkiluoto, Working Report 2014-69, Posiva Oy, FI-27160 Eurajoki, Finland, 1–48.

[15] Canducci, C., Bartolomei, P., Magnani, G., Rizzo, A., Piccoli, A., Tositti, L., and Esposito, M., 2013, Upgrade of the CO2 direct absorption method for low-level 14C liquid scintillation counting, Radiocarbon, 55 (2), 260–67.

[16] Armannsson, H., and Olafsson, M., 2007, Geothermal sampling and analysis, Short Course II on Surface Exploration for Geothermal Resources, UNU-GTP and KenGen, Lake Naivasha, Kenya, 2-17 November 2007, 1–8.

[17] Bungkus, P., and Satrio, 2014, Garis meterorik Indonesia, Prosiding Seminar Nasional Geologi untuk Meningkatkan Kesejahteraan Masyarakat, Faculty of Geological Engineering, Universitas Padjadjaran, Bandung, 24 May 2014.

[18] Geyh, M., 2000, Environmental Isotopes in the Hydrological Cycle: Principles and Applications, Volume IV. Groundwater – Saturated and Unsaturated Zone, Eds. Mook, W.G., International Hydrological Programme, UNESCO/IAEA Series.

[19] Güleç, N., 2013, “Isotope and gas geochemistry of geothermal systems” in Geothermal Exploration Best Practices – Geology, Exploration Drilling, Geochemistry, Geophysics, Eds. Bracke, R., Harvey, C., and Rueter, H., IGA Academy Report, Bochum, Germany, 0112-2013.

[20] Arvanitis, A., Dotsika, E., and Kolios, N., 2016, Geochemical characteristics of the geothermal fluids in the Akropotamos area (Macedonia, Northern Greece), BGSG, 50 (2), 596–605.

[21] IAEA, 2013, Isotope Methods for Dating Old Groundwater, International Atomic energy Agency, Vienna, Austria, 39–40.

[22] Porowski, A., 2014, “Isotope hydrogeology” in Handbook of Engineering Hydrology: Fundamentals and Applications, Eds. Eslamian, S., CRC Press, Boca Raton, Florida, 346–377.

[23] Abuharara, A., 2017, Using isotopes to understand the origin of water and the effect of reinjection in the Los Azufers geothermal field in Mexico, Thesis, Department of Earth and Environmental Sciences, University of Waterloo, Canada.

[24] Sundhoro, H., Nasution, A., and Simanjuntak, J., 2000, Sembalun Bumbung geothermal area, Lombok Island, West Nusa Tenggara, Indonesia: An integrated exploration, Proceedings World Geothermal Congress, Kyushu – Tohoko, Japan, 28 May-10 June, 2000, 1785–1790.

[25] Cruz, V., Vargas, V., Matsuda, K., and Soeda, Y., 2013, Geochemical characterization of the Calacoa geothermal zone, Procedia Earth Planet. Sci., 7, 859–862.

[26] Delmelle, P., Bernard, A., Kusakabe, M., Fischer, T.P., and Takano, B, 2000, Geochemistry of the magmatic–hydrothermal system of Kawah Ijen volcano, East Java, Indonesia, J. Volcanol. Geotherm. Res., 97 (1-4), 31–53.

[27] Torbehbar, A.K., and Sattari, S.M., 2015, Geochemistry and isotope study of discharged geothermal fluids, NW Sabalan geothermal field, NW Iran, Proceeding World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015, 1–9.

[28] Besser, H., Mokadem, N., Redhaounia, B., Hadji, R., Hamad, A., and Hamed, Y., 2018, Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia, EMJE, 3 (16), 1–15.

[29] Óskarsson, F., and Ármannsson, H., 2015, Geochemical methods in geothermal surface exploration, Short Course X on Exploration and Development of Geothermal Resources, UNU-GTP, GDC and KenGen, Lake Bogoria and Lake Naivasha, Kenya, 9 November-1 December, 2015.

[30] Wentao, B., and Bo, L., 2017, Hydrochemical and geochemical characteristics of geothermal water in Gedong area of Guizhou Province, J. Environ. Anal. Toxicol., 7, 488.

[31] Wishart, D.N., 2013, Geothermometry and shallow circulation of a low enthalpy system: The bath geothermal reservoir, Jamaica, Proceeding Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, California, 11-13 February, 2013.

[32] Giggenbach, W.F., 1992, The composition of gases in geothermal and volcanic systems as a function of tectonic setting, Proc. Int. Symp. Water-Rock Interact., 873–878.

[33] Tian, J., and Pang, Z., 2017, Geochemical characteristics of gases from typical high-temperature geothermal systems in China, Procedia Earth Planet. Sci., 17, 500–503.

[34] Haklidir, M., and Haklidir, F.S.T., 2010, Hydrogen production from geothermal sources in Turkey, Proceedings World Congress 2010, Bali, Indonesia, 25-29 April 2010.

[35] Masoumi, R., Calagari, A.A., Siahcheshm, K., and Porkhial, S., 2017, Evaluation of hydrogeochemical and isotopic properties of the geothermal waters in the east of Mount Sabalan, NW Iran, Turk. J. Earth Sci., 26, 441–453.

[36] Strelbitskaya, S., 2005, Interpretation of chemical composition of geothermal fluid from the geothermal field of Baransky volcano, Iturup Island, Russia, United Nations University, UNU Geothermal Training Programme, Orkustofnun, Grensásvegur 9, IS-108 Reykjavík, Iceland.

[37] Wang, X., Wang, G.L., Gan, H.N., Liu, Z., and Nan, D.W., 2018, Hydrochemical characteristics and evolution of geothermal fluids in the Chabu high-temperature geothermal system, southern Tibet, Geofluid, 2018, 8532840.

[38] Kemboi, E., 2015, Evaluation of groundwater hydrogeochemical characteristics and mixing behaviour in Olkaria geothermal systems, Naivasha Kenya, Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015.



DOI: https://doi.org/10.22146/ijc.50790

Article Metrics

Abstract views : 3196 | views : 2991


Copyright (c) 2020 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.