Structural Change of Apoferritin as the Effect of pH Change: DLS and SANS Study

https://doi.org/10.22146/ijc.50630

Arum Patriati(1*), Nadi Suparno(2), Grace Tjungirai Sulungbudi(3), Mujamilah Mujamilah(4), Edy Giri Rachman Putra(5)

(1) Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency, Puspiptek Area Serpong, Tangerang Selatan 15310, Indonesia
(2) Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency, Puspiptek Area Serpong, Tangerang Selatan 15310, Indonesia
(3) Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency, Puspiptek Area Serpong, Tangerang Selatan 15310, Indonesia
(4) Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency, Puspiptek Area Serpong, Tangerang Selatan 15310, Indonesia
(5) Polytechnic Institute of Nuclear Technology, National Nuclear Energy Agency, Jl. Babarsari Kotak POB 6101/YKKB, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Apoferritin is a complex protein potential for drug delivery application. The advantage of apoferritin lies in its core-shell structure, its nano size, and its pH-sensitivity. This study was aimed to characterize the structure of apoferritin due to the pH alteration effect in a solution using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). Both DLS and SANS can observe protein size in solution near its physiological condition. The results show that apoferritin possesses a core-shell structure with a diameter of around 12–13 nm at pH 7. The dissociation of apoferritin occurs at pH 1.9. The SANS data shows the apoferritin at pH 1.9 was dissociated into the smaller oligomer. The structure of this smaller oligomer has a different configuration than the configuration of apoferritin subunits at pH 7. It can cause the failure of reassembly of apoferritin if the apoferritin is neutralized back to pH 7 after dissociation from pH 1.9.

Keywords


apoferritin; dissociation; pH change; SANS; DLS

Full Text:

Full Text PDF


References

[1] Bulvik, B.E., Berenshtein, E., Meyron-Holtz, E.G., Konijn, A.M., and Chevion, M., 2012, Cardiac Protection by preconditioning is generated via an iron-signal created by proteasomal degradation of iron proteins, PLoS One, 7 (11), e48947.

[2] Theil, E.C., 2011, Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry, Curr. Opin. Chem. Biol., 15 (2), 304–311.

[3] Heger, Z., Skalickova, S., Zitka, O., Adam, V., and Kizek, R., 2014, Apoferritin applications in nanomedicine, Nanomedicine, 9 (14), 2233–2245.

[4] Dostálová, S., Konečná, R., Blažková, I., Vaculovičová, M., Kopel, P., Křížková, S., Vaculovič, T., Adam, V., and Kizek, R., 2013, Apoferritin as a targeted drug delivery system, MendelNet 2013, 908–912.

[5] Balamuralidhara, V., Pramodkumar, T.M., Srujana, N., Venkatesh, M.P., Gupta, N.V., Krishna, K.L., and Gangadharappa, H.V, 2011, pH Sensitive drug delivery systems: A review, Am. J. Drug Discovery Dev., 1 (1), 24–48.

[6] Wang, X., Dong, J., Liu, X., Liu, Y., and Ai, S., 2014, A novel pH-controlled immunosensor using hollow mesoporous silica and apoferritin combined system for target virus assay, Biosens. Bioelectron., 54, 85–90.

[7] Kilic, M.A., Ozlu, E., and Calis, S., 2012, A novel protein-based anticancer drug encapsulating nanosphere: Apoferritin-doxorubicin complex, J. Biomed. Nanotechnol., 8 (3), 508–514.

[8] Stetefeld, J., McKenna, S.A., and Patel, T.R., 2016, Dynamic light scattering: A practical guide and applications in biomedical sciences, Biophys. Rev., 8 (4), 409–427.

[9] Hawe, A., Hulse, W.L., Jiskoot, W., and Forbes, R.T., 2011, Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates, Pharm. Res., 28 (9), 2302–2310.

[10] Li, Y., Lubchenko, V., and Vekilov, P.G., 2011, The use of dynamic light scattering and Brownian microscopy to characterize protein aggregation, Rev. Sci. Instrum., 82 (5), 053106.

[11] Blanchet, C.E., and Svergun, D.I., 2013, Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution, Annu. Rev. Phys. Chem., 64 (1), 37–54.

[12] Putra, E.G.R., Bharoto, and Seong, B.S., 2010, Recent development of a 36 meter small-angle neutron scattering BATAN spectrometer (SMARTer) in Serpong Indonesia, J. Phys. Conf. Ser., 247, 012010.

[13] Dewhurst, C., 2003, GRASANSP User Manual, Institut Laue Langevin, Grenoble, France, ILL03DE01T.

[14] Kline, S.R., 2006, Reduction and analysis of SANS and USANS data using IGOR Pro, J. Appl. Crystallogr., 39 (6), 895–900.

[15] Petoukhov, M.V., Franke, D., Shkumatov, A.V., Tria, G., Kikhney, A.G., Gajda, M., Gorba, C., Mertens, H.D.T., Konarev, P.V., and Svergun, D.I., 2012, New developments in the ATSAS program package for small-angle scattering data analysis, J. Appl. Crystallogr., 45 (2), 342–350.

[16] Uchida, M., Kang, S., Reichhardt, C., Harlen, K., and Douglas, T., 2010, The ferritin superfamily: Supramolecular templates for materials synthesis, Biochim. Biophys. Acta, Gen. Subj., 1800 (8), 834–845.

[17] Zhang, Y., and Orner, B.P., 2011, Self-assembly in the ferritin nano-cage protein superfamily, Int. J. Mol. Sci., 12 (8), 5406–5421.

[18] Crichton, R.R., and Bryce, C.F., 1973, Subunit interactions in horse spleen apoferritin. Dissociation by extremes of pH, Biochem. J., 133 (2), 289–299.

[19] Hagelueken, G., Ward, R., Naismith, J.H., and Schiemann, O., 2012, MtsslWizard: In silico spin-labeling and generation of distance distributions in PyMOL, Appl. Magn. Reson., 42 (3), 377–391.

[20] Baugh, E.H., Lyskov, S., Weitzner, B.D., and Gray, J.J., 2011, Real-time PyMOL visualization for Rosetta and PyRosetta, PLoS One, 6 (8), e21931.

[21] Russo, C.J., and Passmore, L.A., 2015, Ultrastable gold substrates for electron cryomicroscopy, Science, 346 (6215), 1377–1380.

[22] Kim, M., Rho, Y., Jin, K.S., Ahn, B., Jung, S., Kim, H., and Ree, M., 2011, pH-Dependent structures of ferritin and apoferritin in solution: Disassembly and reassembly, Biomacromolecules, 12 (5), 1629–1640.

[23] Pontillo, N., Pane, F., Messori, L., Amoresano, A., and Merlino, A., 2016, Cisplatin encapsulation within the ferritin nanocage: A high-resolution crystallographic study, Chem. Commun., 52 (22), 4136–4139.



DOI: https://doi.org/10.22146/ijc.50630

Article Metrics

Abstract views : 2870 | views : 2087


Copyright (c) 2020 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.