Adsorption of Silicate Anions from Geothermal Brine Using Chitosan-Polyethylene Glycol Composite to Prevent Silica Scaling on the Dieng Geo Dipa Geothermal Energy System

https://doi.org/10.22146/ijc.49248

Nur Hayati(1*), Hanik Humaida(2), Dwi Siswanta(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Institute for Investigation and Development of Geological Disaster Technology, Jl. Cendana no. 15, Yogyakarta 55166, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Silica scaling is a common problem in geothermal power generation facilities which inhibits electricity generation. In order to provide a solution to this problem, the removal of silicate ions using CPEG-TOMAC (Chitosan-polyethylene glycol–trioctyl methyl ammonium chloride) membrane adsorbent was investigated for geothermal brine from Geo Dipa Energy, Dieng. The process is dependent on contact time, pH, and the concentration of silicate. An adsorption batch study that used adsorbents for the geothermal brine of the Dieng Geo Dipa reactor 28A showed that CPEG TOMAC at pH 6 resulted in an adsorption capacity of 72.6 mg g–1. Furthermore, the adsorption of silicate ions onto the membrane followed pseudo-second-order kinetics and the Freundlich isotherm model.


Keywords


silica scaling; geothermal brine; chitosan; adsorption; silicate ion

Full Text:

Full Text PDF


References

[1] Nasruddin, Alhamid, M.I., Daud, Y., Surachman, A., Sugiyono, A., Aditya, H.B., and Mahlia, T.M.I., 2016, The potential of geothermal energy for electricity generation in Indonesia: A review, Renewable Sustainable Energy Rev., 53, 733–740.

[2] Purnomo, B.J., and Pichler, T., 2014, Geothermal systems on the island of Java, Indonesia, J. Volcanol. Geotherm. Res., 285, 47–59.

[3] Pambudi, N.A., Itoi, R., Yamashiro, R., Syah Alam, B.Y.C.S.S., Tusara, L., Jalilinasrabady, S., and Khasani, J., 2015, The behavior of silica in geothermal brine from Dieng geothermal power plant, Indonesia, Geothermics, 54, 109–114.

[4] Wang, S., Xiong, Y., Winterfeld, P., Zhang, K., and Wu, Y.S., 2014, Parallel simulation of thermal-hydrological-mechanic (THM) processes in geothermal reservoirs, Proceedings of the 39th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 24-26, 2014, 1–13.

[5] Jamero, J., Zarrouk, S.J., and Mroczek, E., 2018, Mineral scaling in two-phase geothermal pipelines: Two case studies, Geothermics, 72, 1–14.

[6] Akın, T., and Kargı, H., 2019, Modeling the geochemical evolution of fluids in geothermal wells and its implication for sustainable energy production, Geothermics, 77, 115–129.

[7] Antony, A., Low, J.H., Gray, S., Childress, A.E., Le-Clech, P., and Leslie, G., 2011, Scale formation and control in high-pressure membrane water treatment systems: A review, J. Membr. Sci., 383 (1-2), 1–16.

[8] Pambudi, N.A., Itoi, R., Jalilinasrabady, S., and Gürtürk, M., 2018, Sustainability of geothermal power plant combined with thermodynamic and silica scaling model, Geothermics, 71, 108–117.

[9] Spinthaki, A., Matheis, J., Hater, W., and Demadis, K.D., 2018, Antiscalant-driven inhibition and stabilization of “magnesium silicate” under geothermal stresses: The role of magnesium–phosphonate coordination chemistry, Energy Fuels, 32 (11), 11749–11760.

[10] Neofotistou, E., and Demadis, K.D., 2004, Use of antiscalants for mitigation of silica, Desalination, 167, 257–272.

[11] Milne, N.A., O’Reilly, T., Sanciolo, P., Ostarcevic, E., Beighton, M., Taylor, K., Mullett, M., Tarquin, A.J., and Gray, S.R., 2014, Chemistry of silica scale mitigation for RO desalination with particular reference to remote operations, Water Res., 65, 107–133.

[12] Hafez, O.M., Shoeib, M.A., El-Khateeb, M.A., Abdel-Shafy, H.I., and Youssef, A.O., 2018, Removal of scale forming species from cooling tower blowdown water by electrocoagulation using different electrodes, Chem. Eng. Res. Des., 136, 347–357.

[13] Sasan, K., Brady, P.V., Krumhansl, J.L., and Nenoff, T.M., 2017, Removal of dissolved silica from industrial waters using inorganic ion exchangers, J. Water Process Eng., 17, 117–123.

[14] Yin, W., Ai, J., Huang, L.Z., Tobler, D.J., and Hansen, H.C.B., 2018, A silicate/glycine switch to control the reactivity of layered iron(II)-iron(III) hydroxides for dechlorination of carbon tetrachloride, Environ. Sci. Technol., 52 (14), 7876–7883.

[15] Reimus, P., Dean, C., and Newell, D., 2018, Evaluation of a cation-exchanging tracer to interrogate fracture surface area in enhanced geothermal systems, Geothermics, 71, 12–23.

[16] Ali, M.B.S., Hamrouni, B., Bouguecha, S., and Dhahbi, M., 2004, Silica removal using ion-exchange resins, Desalination, 167, 273–279.

[17] Gunnarsson, I., and Arnórsson, S., 2005, Impact of silica scaling on the efficiency of heat extraction from high-temperature geothermal fluids, Geothermics, 34 (3), 320–329.

[18] Soares, S.F., Rodrigues, M.I., Trindade, T., and Daniel-da-Silva, A.L., 2017, Chitosan-silica hybrid nanosorbents for oil removal from water, Colloids Surf., A, 532, 305–313.

[19] Monasterio, M., Gaitero, J.J., Manzano, H., Dolado, J.S., and Cerveny, S., 2015, Effect of chemical environment on the dynamics of water confined in calcium silicate minerals: Natural and synthetic tobermorite, Langmuir, 31 (17), 4964–4972.

[20] Moreira, A.L.S.L., Pereira, A.S., Speziali, M.G., Novack, K.M., Gurgel, L.V.A., and Gil, L.F., 2018, Bifunctionalized chitosan: A versatile adsorbent for removal of Cu(II) and Cr(VI) from aqueous solution, Carbohydr. Polym., 201, 218–227.

[21] Hasson, D., Shemer, H., and Sher, A., 2011, State of the art of friendly “green” scale control inhibitors: A review article, Ind. Eng. Chem. Res., 50 (12), 7601–7607.

[22] Rajeswari, A., Amalraj, A., and Pius, A., 2015, Removal of phosphate using chitosan-polymer composites, J. Environ. Chem. Eng., 3 (4), 2331–2341.

[23] Goyal, R.K., Jayakumar, N.S., and Hashim, M.A., 2011, Chromium removal by emulsion liquid membrane using [BMIM]+[NTf2] as stabilizer and TOMAC as extractant, Desalination, 278 (1-3), 50–56.

[24] Wionczyk, B., and Apostoluk, W., 2005, Equilibria of Extraction of chromium(III) from alkaline solutions with trioctylmethylammonium chloride (aliquat 336), Hydrometallurgy, 78 (1-2 SPEC. ISS.), 116–128.

[25] Bai, S., Han, J., Du, C., and Ding, W., 2019, Selective removal of silicic acid by a gallic-acid modified resin, J. Water Reuse Desalin., 9 (4), 431–441.

[26] Hiemstra, T., Barnett, M.O., and van Riemsdijk, W.H., 2007, Interaction of silicic acid with goethite, J. Colloid Interface Sci., 310 (1), 8–17.

[27] Hansen, H.C.B., Raben-Lange, B., Raulund-Rasmussen, K., and Borggaard, O.K., 1994, Monosilicate adsorption by ferrihydrite and goethite at pH 3–6, Soil Sci., 158 (1), 40–46.



DOI: https://doi.org/10.22146/ijc.49248

Article Metrics

Abstract views : 2160 | views : 1564


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.