Hydrothermal Synthesis: Low−Temperature Subcritical Water for Ceria−Zirconia Mixed Oxides Preparation


Siti Machmudah(1*), Widiyastuti Widiyastuti(2), Wahyudiono Wahyudiono(3), Sugeng Winardi(4), Hideki Kanda(5), Motonobu Goto(6)

(1) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
(2) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
(3) Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464–8603, Japan
(4) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
(5) Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464–8603, Japan
(6) Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464–8603, Japan
(*) Corresponding Author


A low-temperature hydrothermal synthesis technique was employed as a medium to produce ceria−zirconia mixed oxides particles at temperatures of 200–300 °C and pressure of 10 MPa in a batch process. At these conditions, the average crystallite sizes of ceria−zirconia mixed oxides increased slightly with increasing reaction temperature when the feed solution containing ceria and zirconia with a ratio of 1:1 was fed. SEM images illustrated that the morphologies of the ceria−zirconia mixed oxides particles were spherical and spherical−like with a diameter of around 100 nm. The EDX spectrum indicated that the signal corresponding to the ceria and the zirconia elements at 5 and 2 keV, respectively, were strongly detected in the products. The XRD pattern revealed that the mixed metal oxides particle products that comprised of cerium and zirconium oxides particles with cubic and monoclinic structures, respectively, were affected by their molar content in the feed solution.


ceria−zirconia oxides; metal oxides; hydrothermal; subcritical; synthesis

Full Text:

Full Text PDF


[1] Trovarelli, A., 1996, Catalytic properties of ceria and CeO2–containing materials, Catal. Rev. Sci. Eng., 38 (4), 439–520.

[2] Montini, T., Melchionna, M., Monai, M., and Fornasiero, P., 2016, Fundamentals and catalytic applications of CeO2–based materials, Chem. Rev., 116 (10), 5987–6041.

[3] Li, C., Sun, Y., Djerdj, I., Voepel, P., Sack, C.C., Weller, T., Ellinghaus, R., Sann, J., Guo, Y., Smarsly, B.M., and Over, H., 2017, Shape–controlled CeO2 nanoparticles: Stability and activity in the catalyzed HCl oxidation reaction, ACS Catal., 7 (10), 6453–6463.

[4] Li, P., Chen, X., Li, Y., and Schwank, J.W., 2019, A review on oxygen storage capacity of CeO2−based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control, Catal. Today, 327, 90−115.

[5] Trovarelli, A., and Fornasiero, P., 2013, Catalysis by Ceria and Related Materials, 2nd Ed., Imperial College Press, London, UK, p. 329, 666, 735.

[6] Ragurajan, D., Satgunam, M., and Golieskardi, M., 2014, The effect of cerium oxide addition on the properties and behavior of Y–TZP, Int. Sch. Res. Notices, 2014, 828197.

[7] Huang, H., Liu, J., Sun, P., Ye, S., and Liu, B., 2017, Effects of Mn–doped ceria oxygen–storage material on oxidation activity of diesel soot, RSC Adv., 7 (12), 7406–7412.

[8] Manicone, P.F., Iommetti, P.R., and Raffaelli, L., 2007, An overview of zirconia ceramics: Basic properties and clinical applications, J. Dent., 35 (11), 819–826.

[9] Zhang, Y., Malzbender, J., Mack, D.E., Jarligo, M.O., Cao, X., Li, Q., Vaßen, R., and Stöver, D., 2013, Mechanical properties of zirconia composite ceramics, Ceram. Int., 39 (7), 7595–7603.

[10] Daou, E.E., 2014, The zirconia ceramic: Strengths and weaknesses, Open Dent. J., 8, 33–42.

[11] Sen, N., and Isler, S., 2020, Microstructural, physical, and optical characterization of high−translucency zirconia ceramics, J. Prosthet. Dent., 123 (5), 761–768.

[12] Kumar, A., Mansour, H.M., Friedman, A., and Blough, E.R., 2013, Nanomedicine in Drug Delivery, 1st Ed., CRC Press, Boca Raton, Florida, USA, p. 25.

[13] Hayashi, H., and Hakuta, Y., 2010, Hydrothermal synthesis of metal oxide nanoparticles in supercritical water, Materials, 3 (7), 3794–3817.

[14] Kaya, C., He, J.Y., Gu, X., and Butler, E.G., 2002, Nanostructured ceramic powders by hydrothermal synthesis and their applications, Microporous Mesoporous Mater., 54 (1-2), 37–49.

[15] Machmudah, S., Prastuti, O.P., Widiyastuti, Winardi, S., Wahyudiono, Kanda, H., and Goto, M., 2016, Macroporous zirconia particles prepared by subcritical water in batch and flow processes, Res. Chem. Intermed., 42 (6), 5367–5385.

[16] Pu, Y., Wang, J.X., Wang, D., Foster, N.R., and Chen, J.F., 2019, Subcritical water processing for nano pharmaceuticals, Chem. Eng. Process. Process Intensif., 140, 36−42.

[17] Zhang, J., Kumagai, H., Yamamura, K., Ohara, S., Takami, S., Morikawa, A., Shinjoh, H., Kaneko, J., Adschiri, T., and Suda, A., 2011, Extra–low–temperature oxygen storage capacity of CeO2 nanocrystals with cubic facets, Nano Lett., 11 (2), 361–364.

[18] Demizu, A., Beppu, K., Hosokawa, S., Kato, K., Asakura, H., Teramura, K., and Tanaka, T., 2017, Oxygen storage property and chemical stability of SrFe1–xTixO3–d with robust perovskite structure, J. Phys. Chem. C, 121 (35), 19358–19364.

[19] Adschiri, T., and Yoko, A., 2018, Supercritical fluids for nanotechnology, J. Supercrit. Fluids, 134, 167–175.

[20] Adschiri, T., Kanazawa, K., and Arai, K., 1992, Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water, J. Am. Ceram. Soc., 75 (4), 1019–1022.

[21] Lane, M.K.M., and Zimmerman, J.B., 2019, Controlling metal oxide nanoparticle size and shape with supercritical fluid synthesis, Green Chem., 21 (14), 3769−3781.

[22] Adschiri, T., Hakuta, Y., and Arai, K., 2000, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions, Ind. Eng. Chem. Res., 39 (12), 4901–4907.

[23] Zhang, Y., Zhang, L., Deng, J., Dai, H., and He, H., 2009, Controlled synthesis, characterization, and morphology–dependent reducibility of ceria–zirconia–yttria solid solutions with nanorod–like, microspherical, microbowknot–like, and micro–octahedral shapes, Inorg. Chem., 48 (5), 2181–2192.

[24] Yang, Y., Wu, Q., Wang, M., Long, J., Mao, Z., and Chen, X., 2014, Hydrothermal synthesis of hydroxyapatite with different morphologies: Influence of supersaturation of the reaction system, Cryst. Growth Des., 14 (9), 4864–4871.

[25] Hosokawa, M., Nogi, K., Naito, M., and Yokoyama, T., 2007, Nanoparticle Technology Handbook, 1st Ed., Elsevier, Amsterdam, Netherlands, p. 270–272.

[26] Machmudah, S., Zulhijah, R., Wahyudiono, Setyawan, H., Kanda, H., and Goto, M., 2015, Magnetite thin film on mild steel formed by hydrothermal electrolysis for corrosion prevention, Chem. Eng. J., 268, 76–85.

[27] Tok, A.I.Y., Boey, F.Y.C., Dong, Z., and Sun, X.L., 2007, Hydrothermal synthesis of CeO2 nano–particles, J. Mater. Process. Technol., 190 (1-3), 217–222.

[28] Kaminski, P., Ziolek, M., and van Bokhoven, J.A., 2017, Mesoporous cerium–zirconium oxides modified with gold and copper – Synthesis, characterization and performance in selective oxidation of glycerol, RSC Adv., 7 (13), 7801–7819.

[29] Parimi, D., Sundararajan, V., Sadak, O., Gunasekaran, S., Mohideen, S.S., and Sundaramurthy, A., 2019, Synthesis of positively and negatively charged CeO2 nanoparticles: Investigation of the role of surface charge on growth and development of Drosophila melanogaster, ACS Omega, 4 (1), 104−113.

[30] Phokha, S., Pinitsoontorn, S., Chirawatkul, P., Poo–arporn, Y., and Maensiri, S., 2012, Synthesis, characterization, and magnetic properties of monodisperse CeO2 nanospheres prepared by PVP–assisted hydrothermal method, Nanoscale Res. Lett., 7, 425.

[31] Alammar, T., Noei, H., Wang, Y., Grünert, W., and Mudring, A.V., 2015, Ionic liquid–assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation, ACS Sustainable Chem. Eng., 3 (1), 42–54.

[32] Zhang, X., Wang, Q., Zhang, J., Wang, J., Guo, M., Chen, S., Li, C., Hu, C., and Xie, Y., 2015, One step hydrothermal synthesis of CeO2–ZrO2 nanocomposites and investigation of the morphological evolution, RSC Adv., 5 (109), 89976–89984.

[33] Darr, J.A., Zhang, J., Makwana, N.M., and Weng, X., 2017, Continuous hydrothermal synthesis of inorganic nanoparticles: Applications and future directions, Chem. Rev., 117 (17), 11125–11238.

[34] Devaiah, D., Reddy, L.H., Park, S.E., and Reddy, B.M., 2018, Ceria–zirconia mixed oxides: Synthetic methods and applications, Catal. Rev. Sci. Eng., 60 (2), 177−277.

[35] Prasad, D.H., Park, S.Y., Ji, H., Kim, H.R., Son, J.W., Kim, B.K., Lee, H.W., and Lee, J.H., 2012, Effect of steam content on nickel nano–particle sintering and methane reforming activity of Ni–CZO anode cermets for internal reforming SOFCs, Appl. Catal., A, 411-412, 160–169.

[36] Zaytseva, Y.A., Panchenko, V.N., Simonov, M.N., Shutilov, A.A., Zenkovets, Renz, M., Simakova, I.L., and Parmon, V.N., 2013, Effect of gas atmosphere on catalytic behaviour of zirconia, ceria and ceria–zirconia catalysts in valeric acid ketonization, Top. Catal., 56 (9), 846–855.

[37] Uzunoglu, A., Zhang, H., Andreescu, S., and Stanciu, L.A., 2015, CeO2–MOx (M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity, J. Mater. Sci., 50 (10), 3750–3762.

[38] Hirano, M., and Suda, A., 2003, Oxygen storage capacity, specific surface area, and pore–size distribution of ceria–zirconia solid solutions directly formed by thermal hydrolysis, J. Am. Ceram. Soc., 86 (12), 2209–2211.

[39] Suda, A., Yamamura, K., Hideo, S., Ukyo, Y., Tanabe, T., Nagai, Y., and Sugiura, M., 2004, Effect of the amount of Pt loading on the oxygen storage capacity of ceria–zirconia solid solution, J. Jpn. Soc. Powder Powder Metall., 51 (11), 815–820.

[40] Cui, Y., Fang, R., Shang, H., Shi, Z., Gong, M., and Chen, Y., 2015, The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites, J. Alloys Compd., 628, 213–221.

[41] Yin, K., Davis, R.J., Mahamulkar, S., Jones, C.W., Agrawal, P., Shibata, H., and Malek, A., 2017, Catalytic oxidation of solid carbon and carbon monoxide over cerium–zirconium mixed oxides, AIChE J., 63 (2), 725–738.

[42] Wang, L., Chen, S., Hei, J., Gao, R., Liu, L., Su, L., Li, G., and Chen, Z., 2020, Ultrafine, high−loading and oxygen−deficient cerium oxide embedded on mesoporous carbon nanosheets for superior lithium−oxygen batteries, Nano Energy, 71, 104570.

DOI: https://doi.org/10.22146/ijc.47357

Article Metrics

Abstract views : 3264 | views : 3505

Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.