Varietal Discrimination of Pineapple (Ananas comosus L.) Using Chromatographic Fingerprints and Chemometrics

Almie Amira Munaras Khan(1*), Norashikin Saim(2), Rossuriati Dol Hamid(3), Rozita Osman(4), Siti Raihan Zakaria(5)

(1) Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
(2) Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
(3) Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
(4) Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
(5) Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, Jengka 26400, Pahang, Malaysia
(*) Corresponding Author


Online solid-phase extraction-liquid chromatography (online SPE-LC) with diode array detector (DAD) was used to obtain the chromatographic fingerprint of bioactive compounds of pineapple (Ananas comosus L.). The extracts from 40 samples of three different varieties of pineapple (Morris, MD2, and Josaphine) were obtained using pressurized liquid extraction (PLE) prior to separation using online SPE-LC. The SPE-LC method was optimized and validated and applied to 40 pineapple samples of those three varieties. Seven bioactive compounds identified include catechin, epicatechin, chlorogenic acid, ferulic acid, quercetin, myricetin, and bromelain. For varietal discrimination, the relative areas of 16 selected peaks were subjected to chemometric techniques. The three pineapple varieties were successfully discriminated using cluster analysis (CA) and principal component analysis (PCA).


online SPE-LC; pineapple; bioactive compounds; chromatographic fingerprint; chemometrics

Full Text:

Full Text PDF


[1] Yapo, E.S., Kouakou, H.T., Kouakou, L.K., Kouadio, J.Y., Kouamé, P., and Mérillon, J., 2011, Phenolic profiles of pineapple fruits (Ananas comosus L. Merrill) influence of the origin of suckers, Aust. J. Basic Appl. Sci., 5 (6), 1372–1378.

[2] Wen, L., 2001, Pineapple juice: Phenolic composition and enzymatic browning inhibition, Dissertation, Oregon State University, United States.

[3] Larrauri, J.A., Rupérez, P., and Saura-Calixto, F., 1997, Pineapple shell as a source of dietary fiber with associated polyphenols, J. Agric. Food Chem., 45 (10), 4028–4031.

[4] Chaisakdanugull, C., Theerakulkait, C., and Wrolstad, R.E., 2007, Pineapple juice and its fractions in enzymatic browning inhibition of banana, J. Agric. Food Chem., 55 (10), 4252–4257.

[5] Hale, L.P., Greer, P.K., Trinh, C.T., and Gottfried, M.R., 2005, Treatment with oral bromelain decreases colonic inflammation in the IL- 10-deficient murine model of inflammatory bowel disease, Clin. Immunol., 116 (2), 135–142.

[6] Reid, L.M., O’Donnell, C.P., and Downey, G., 2006, Recent technological advances for the determination of food authenticity, Trends Food Sci. Technol., 17 (7), 344–353.

[7] Saad, A.M.A., 2016, An investigation into the implementation of total quality environmental management (TQEM) for sustainability in Lybian food industry, Dissertation, Nottingham Trent University, United Kingdom.

[8] Gong, F., Liang, Y.Z., Xie, P.S., and Chau, F.T., 2003, Information theory applied to chromatographic fingerprint of herbal medicine for quality control, J. Chromatogr. A, 1002 (1-2), 25–40.

[9] Chun, M.H., Kim, E.K., Yu, S.M., Oh, M.S., Moon, K.Y., Jung, J.J., and Hong, J., 2011, GC/MS combined with chemometrics methods for quality control of Schizonepeta tenuifolia Briq: Determination of essential oils, Microchem. J., 97 (2), 274–281.

[10] Stanek, N., and Jasicka-Misiak, I., 2018, HPTLC phenolic profiles as useful tools for the authentication of honey, Food Anal. Methods, 11, 2979–2989.

[11] Bajoub, A., Bendini, A., Fernández-Gutiérrez, A., and Carrasco-Pancorbo, A., 2018, Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review, Crit. Rev. Food Sci. Nutr., 58 (5), 832–857.

[12] Bengana, M., Bakhouche, A., Lozano-Sánchez, J., Amir, Y., Youyou, A., Segura-Carretero, A., and Fernández-Gutiérrez, A., 2013, Influence of olive ripeness on chemical properties and phenolic composition of Chemlal extra-virgin olive oil, Food Res. Int., 54 (2), 1868–1875.

[13] Fan, X.H., Cheng, Y.Y., Ye, Z.L., Lin, R.C. and Qian, Z.Z., 2006, Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines, Anal. Chim. Acta, 555 (2), 217–224.

[14] Petersson, E.V., Liu, J., Sjöberg, P.J.R., Danielsson, R., and Turner C., 2010, Pressurized hot water extraction of anthocyanins from red onion: A study on extraction and degradation rates, Anal. Chim. Acta, 663 (1), 27–32.

[15] Hartonen, K., Parshintsev, J., Sandberg, K., Bergelin, E., Nisula, L., and Riekkola, M.L., 2007, Isolation of flavonoids from aspen knotwood by pressurized hot water extraction and comparison with other extraction techniques, Talanta, 74 (1), 32–38.

[16] Khan, A.A.M., Saim, N., and Hamid, R.D., 2017, Optimisation of pressurised liquid extraction of bioactive compounds from Ananas comosus (pineapple) fruit, Pertanika J. Sci. Technol., 25 (S), 175–182.

[17] Zaini, N.N., Osman, R., Juahir, H., and Saim, N., 2016, Development of chromatographic fingerprints of Eurycoma longifolia (Tongkat Ali) roots using online solid phase extraction-liquid chromatography (SPE-LC), Molecules, 21 (5), E583.

[18] Li, T., Shen, P., Liu, W., Liu, C., Liang, R., Yan, N., and Chen, J., 2014, Major polyphenolics in pineapple peels and their antioxidant interactions, Int. J. Food Prop., 17 (8), 1805–1817.

[19] Fine, A.M., 2000, Oligomeric proanthocyanidin complexes: History, structure, and phytopharmaceutical applications, Altern. Med. Rev., 5 (2), 144–151.

[20] Mazalan, M.F., and Yusof, Y., 2017, Natural pineapple leaf fibre extraction on Josapine and Morris, MATEC Web Conf., 135, 00043.

[21] Bevilacqua, M., Bro, R., Marini, F., Rinnan, Å., Rasmussen, M.A., and Skov, T., 2017, Recent chemometrics advances for foodomics, TrAC, Trends Anal. Chem., 96, 42–51

[22] Gad, H.A., El-Ahmady, S.H., Abou-Shoer, M.I., and Al-Azizi, M.M., 2013, Application of chemometrics in authentication of herbal medicines: A review, Phytochem. Anal., 24 (1), 1–24.

[23] Perestrelo, R., Barros, A.S., Rocha, S.M., and Câmara, J.S., 2014, Establishment of the varietal profile of Vitis vinifera L. grape varieties from different geographical regions based on HS-SPME/GC-qMS combined with chemometric tools, Microchem. J., 116, 107–117.

[24] Soifoini, T., Donno, D., Jeannoda, V., Rakotoniaina, E., Hamidou, S., Achmet, S.M., Solo, N.R., Afraitane, K., Giacoma, C., and Beccaro, G.L., 2018, Bioactive compounds, nutritional traits, and antioxidant properties of Artocarpus altilis (Parkinson) fruits: Exploiting a potential functional food for food security on the Comoros Islands, J. Food Qual., 2018, 5697928.

[25] Belmonte-Sánchez, J.R., Gherghel, S., Arrebola-Liébanas, J., González, R.R., Vidal, J.L.M., Parkin, I., and Frenich, A.G., 2018, Rum classification using fingerprinting analysis of volatile fraction by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry, Talanta, 187, 348–356.

[26] Efenberger-Szmechtyk, M., Nowak, A., and Kregiel, D., 2018, Implementation of chemometrics in quality evaluation of food and beverages, Crit. Rev. Food Sci. Nutr., 58 (10), 1747–1766.

[27] Neto, S., 2018, Classification and authentication of plants by chemometric analysis of spectral data, Compr. Anal. Chem., 80, 105–125.

[28] Rafi, M., Jannah, R., Heryanto, R., Kautsar, A., and Septaningsih, D., 2018, UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species, Int. Food Res. J., 25 (2), 643–648.

[29] Wang, Y., and Jin, Y., 2017, Development and distinction of Rhizoma rodgersiae with HPLC-DAD fingerprint analysis combined with chemical pattern recognition techniques, Am. J. Anal. Chem., 8, 681–689.

[30] Zakaria, S.R., Saim, N., Osman, R., Abdul Haiyee, Z., and Juahir, H., 2018, Combination of sensory, chromatographic, and chemometrics analysis of volatile organic compounds for the discrimination of authentic and unauthentic Harumanis mangoes, Molecules, 23 (9), E2365.


Article Metrics

Abstract views : 100 | views : 81

Copyright (c) 2020 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.