Synthesis and Characterization of Controlled-Release Urea Fertilizer from Superabsorbent Hydrogels

Salih Muharam(1*), Afria Fitri(2), Lela Mukmilah Yuningsih(3), Yulia Mariana Tessa Ayudia Putri(4), Isnaini Rahmawati(5)

(1) Department of Chemistry, Faculty of Science and Technology, Muhammadiyah University of Sukabumi, Jl. R. Syamsudin S.H. No. 50, Cikole, Sukabumi 43113, West Java, Indonesia
(2) Department of Chemistry, Faculty of Science and Technology, Muhammadiyah University of Sukabumi, Jl. R. Syamsudin S.H. No. 50, Cikole, Sukabumi 43113, West Java, Indonesia
(3) Department of Chemistry, Faculty of Science and Technology, Muhammadiyah University of Sukabumi, Jl. R. Syamsudin S.H. No. 50, Cikole, Sukabumi 43113, West Java, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Pondok Cina, Depok 16424, West Java, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Pondok Cina, Depok 16424, West Java, Indonesia
(*) Corresponding Author


It is very important to develop controlled-release fertilizers to ensure efficiency and environmental protection. This study aims to make a superabsorbent hydrogel-based controlled-release urea fertilizer. Superabsorbent hydrogels were prepared from the cellulose of corn cobs cross-linking with epichlorohydrin, and then an amount of urea as a fertilizer was stored inside the hydrogels (GEL-A). The GEL-A functionalization with carboxy-methyl was also carried out in this study to improve the hydrophilicity of hydrogels (GEL-B). GEL-A and GEL-B were immersed in water at a certain pH and temperature range and the urea concentration released from the hydrogels was monitored by a spectrophotometer. The results showed that the urea released by GEL-A and GEL-B was not much different. Respectively, the urea efficiency of GEL-A and GEL-Bwas around 5.29% and 5.56% for 180 min. The urea released from both hydrogels was not significantly affected by changes in the temperature of the solution. Urea release was influenced by pH, and the rate of urea release of GEL-B was faster than GEL-A, so pH control was needed in the application of this slow-release fertilizer.


fertilizer; cellulose; superabsorbent hydrogel; slow-release fertilizer

Full Text:

Full Text PDF


[1] Trenkel, M.E., 2010, Slow and Controlled Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, 2nd Ed., International Fertilizer Industry Association (IFA), Paris, France.

[2] Liu, M., Liang, R., Zhan, F., Liu, Z., and Niu, A., 2007, Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization, Polym. Int., 56 (6), 729–737.

[3] Talaat, H.A., Sorour, M.H., Aboulnour, A.G., Shaalan, H.F., Ahmed, E.M., Awad, A.M., and Ahmed, M.A., 2008, Development of a multi-component fertilizing hydrogel with relevant techno-economic indicators, Am. Eurasian J. Agric. Environ. Sci., 3 (5), 764–770.

[4] Puoci, F., Iemma, F., Spizzirri, U.G., Cirillo, G., Curcio, M., and Picci, N., 2008, Polymer in agriculture: A review, Am. J. Agric. Biol. Sci., 3 (1), 299–314.

[5] Azeem, B., KuShaari, K., Man, Z.B., Basit, A., and Thanh, T.H., 2014, Review on materials and methods to produce controlled release coated urea fertilizer, J. Controlled Release, 181, 11–21.

[6] Zohuriaan-Mehr, M.J., and Kabiri, K., 2008, Superabsorbent polymer materials: A review, Iran. Polym. J., 17 (6), 451–477.

[7] Kabir, S.M.F., Sikdar, P.P., Haque, B., Bhuiyan, M.A.R., Ali, A., and Islam, M.N., 2018, Cellulose-based hydrogels materials: Chemistry, properties, and their prospective applications, Prog. Biomater., 7 (3), 153–174.

[8] Chang, C., Duan, B., Cai, J., and Zhang, L., 2010, Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery, Eur. Polym. J., 46 (1), 92–100.

[9] Ibrahim, S.M., El Salmawi, K.M., and Zahran, A.H., 2007, Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation, J. Appl. Polym. Sci., 104 (3), 2003–2008.

[10] Murthy, P.S.K., Mohan, Y.M., Varaprasad, K., Sreedhar, B., and Raju, K.M., 2008, First successful design of semi-IPN hydrogels-silver nanocomposites: a facile approach for antibacterial application, J. Colloid Interface Sci., 318 (2), 217–224.

[11] Muharam, S., Yuningsih, L.M., and Sumitra, M.R., 2017, Characterization of superabsorbent hydrogels based on epichlorohydrin crosslink and carboxymethyl functionalization of cassava starch, AIP Conf. Proc., 1862, 030083.

[12] Yusnaidar, Wirjosentono, B., Thamrin, and Eddiyanto, 2017, Synthesized superabsorbent based on cellulose from rice straw for controlled-release of urea, Orient. J. Chem., 33 (4), 1905–1913.

[13] National Standardization Agency of Indonesia, 1991, SNI 06-2479-1991, Metode pengujian kadar amonium dalam air dengan alat spektrofotometer secara nessler, National Standardization Agency of Indonesia, Jakarta, Indonesia.

[14] Effendi, F., Elvia, R., and Amir, H., 2018, Preparasi dan karakterisasi mikrokristalin selulosa (MCC) berbahan baku tandan kosong kelapa sawit (TKKS), Alotrop, 2 (1), 52–57.

[15] Johar, N., Ahmad, I., and Dufresne, A., 2012, Extraction, preparation and characterization of cellulose fibres and nanocrystal from rice husk, Ind. Crops Prod., 37 (1), 93–99.

[16] Zulharmitta, Viora, L., and Rivai, H., 2011, Pembuatan mikrokristalin selulosa dari batang rumput gajah (Pennisetum purpureum Schumach), Jurnal Farmasi Higea, 3 (2), 102–111.

[17] Kabiri, K., and Zohuriaan-Mehr, M.J., 2004, Porous superabsorbent hydrogels composites: Synthesis, morphology and swelling rate, Macromol. Mater. Eng., 289 (7), 653–661.

[18] Cai, J., and Zhang, L., 2006, Unique gelation behavior of cellulose in NaOH/urea aqueous solution, Biomacromolecules, 7 (1), 183–189.

[19] Ciolacu, D.E., and Suflet, D.M., 2018, “Cellulose-based hydrogels for medical/pharmaceutical applications” in Biomass as Renewable Raw Material to Obtain Bioproduct of High-Tech Value, Eds. Popa, V., and Volf, I., Elsevier, Romania, 401–439.

[20] Udoetok, I.A., Dimmick, R.M., Wilson, L.D., and Headley, J.V., 2016, Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution, Carbohydr. Polym., 136, 329–340.

[21] Sangseethong, K., Ketsilp, S., and Sriroth, K., 2005, The role of reaction parameters on the preparation and properties of carboxymethyl cassava starch, Starch/Stärke, 57 (2), 84–93.

[22] Toğrul, H., and Arslan, N., 2003, Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose, Carbohydr. Polym., 54 (1), 73–82.

[23] Adeyanju, O., Olademehin, O.P., Hussaini, Y., Nwanta, U.C., Adejoh, A.I., and Plavec, J., 2016, Synthesis, and characterization of carboxymethyl Plectranthus esculentus starch. A potential disintegrant, J. Pharm. Appl. Chem., 2 (3), 189–195.

[24] Wen, P., Han, Y., Wu, Z., He, Y., Ye, B.C., and Wang, J., 2017, Rapid synthesis of a corncob-based semi-interpenetrating polymer network slow-release nitrogen fertilizer by microwave irradiation to control water and nutrient losses, Arabian J. Chem., 10 (7), 922–934.

[25] Mohammadi-Khoo, S., Moghadam, P.N., Fareghi, A.R., and Movagharnezhad, N., 2016, Synthesis of a cellulose-based hydrogels network: Characterization and study of urea fertilizer slow release, J. Appl. Polym. Sci., 133 (5), 42935

[26] Shah, R., Saha, N., and Saha, P., 2015, Influence of temperature, pH and simulated biological solutions on swelling and structural properties of biomineralized (CaCO3) PVP-CMC hydrogels, Prog. Biomater., 4, 123–136.

[27] Chang, C., Zhang, L., Zhou, J., Zhang, L., and Kennedy, J.F., 2010, Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions, Carbohydr. Polym., 82 (1), 122–127.

[28] Mohadi, R., Saputra, A., Hidayati, N., and Lesbani, A., 2014, Studi interaksi ion logam Mn2+ dengan selulosa dari serbuk kayu, Jurnal Kimia, 8 (1), 1–8.

[29] Hutomo, G.S., Marseno, D.W., Anggrahini, S., and Supriyanto, 2012, Ekstraksi selulosa dari pod husk kakao menggunakan sodium hidroksida, Agritech, 32 (3), 223–229.

[30] Viera, R.G.P., Filho, G.R., de Assunção, R.M.N., Meireles, C.S., Vieira, J.G., and de Oliveira, G.S., 2007, Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose, Carbohydr. Polym., 67 (2), 182–189.

[31] Silverstein, R.M., Webster, F.X., and Kiemle, D.J., 2005, Spectrometric Identification of Organic Compounds, 7th Ed., John Wiley & Sons, Hoboken, New Jersey, USA.

[32] Wang, J., Liu, S., Qin, Y., Chen, X., Xing, R., Yu, H., Li, K., and Li, P., 2017, Preparation and characterization of controlled-release fertilizers coated with marine polysaccharides derivates, Chin. J. Oceanol. Limnol., 35 (5), 1086–1093.

[33] Ni, B., Liu, M., and Lü, S., 2009, Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations, Chem. Eng. J., 155 (3), 892–898.

[34] Wen, P., Wu, Z., He, Y., Han, Y., and Tong, Y., 2016, Characterization of p(AA-co-AM)/bent/urea and its swelling and slow release behavior in a simulative soil environment, J. Appl. Polym. Sci., 133 (12), 43082.

[35] Lynch, I., and Dawson, K.A., 2004, Release of model compounds from “plum-pudding”-type gels composed of microgel particles randomly dispersed in a gel matrix, J. Phys. Chem. B, 108 (30), 10893–10898.

[36] Zhao, Y., Su, H., Fang, L., and Tan, T., 2005, Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature- and pH- responsiveness properties, Polymer, 46 (14), 5368–5376.

[37] Li, X., Li, Q., Xu, X., Su, Y., Yue, Q., and Gao, B., 2015, Characterization, swelling and slow-release properties of e new controlled release fertilizer based on wheat straw cellulose hydrogels, J. Taiwan Inst. Chem. Eng., 60, 564–572.

[38] Rose, R., 2002, Slow release fertilizers 101, Dumroese, R.K., Riley, L.E., and Landis, T.D., Technical coordinators, National Proceedings: Forest and Conservation Nursery Associations-1999, 2000, and 2001, Proceedings RMRS-P-24, Ogden, UT., USDA Forest Service, Rocky Mountain Research Station, 304–308.

[39] Zhang, X., and Zhuo, R., 2000, Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogels with the improved surface property, J. Colloid Interface Sci., 223 (2), 311–313.

[40] Lee, W.F., and Yuan, W.Y., 2000, Thermoreversible hydrogels X: synthesis and swelling behavior of the (N-isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropyl sulfonate) copolymeric hydrogels, J. Appl. Polym. Sci., 77 (8), 1760–1768.


Article Metrics

Abstract views : 3373 | views : 2947

Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.