Photocatalytic Degradation of Commercial Diazinon Pesticide Using C,N-codoped TiO2 as Photocatalyst

https://doi.org/10.22146/ijc.43982

Khoiriah Khoiriah(1), Diana Vanda Wellia(2), Jarnuzi Gunlazuardi(3), Safni Safni(4*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang 25163, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang 25163, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Sciences, University of Indonesia, Depok 16424, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang 25163, Indonesia
(*) Corresponding Author

Abstract


Diazinon (C12H21N2O3PS) is an effective pest controller that has been frequently used by farmers in agriculture. It is a nonspecific and highly toxic pesticide having low persistence in the environment and categorized as moderately hazardous class II. The degradation of commercial diazinon in aqueous solution was investigated by photocatalysis using low-energy activated C,N-codoped TiO2 as catalyst under visible-light. The influence of some parameters, i.e., catalyst concentration, the initial concentration of diazinon, initial pH of diazinon, and irradiation time on the diazinon degradation was studied. The amount of diazinon degradation was strongly influenced by all the above parameters. The results show that titania-modified enhanced the degradation percentage of diazinon, from 44.08% without a catalyst to 86.93% by adding 12 mg C,N-codoped TiO2 catalyst after 30 minutes visible-light irradiation. UV-visible spectrophotometer, HPLC, and COD analysis verified that diazinon was successfully degraded under photocatalysis visible.


Keywords


degradation; photocatalysis; diazinon; C,N-codoped TiO2

Full Text:

Full Text PDF


References

[1] Čolović, M., Krstić, D., Petrović, S., Leskovac, A., Joksić, G., Savić, J., Franko, M., Trebše, P., and Vasić, V., 2010, Toxic effects of diazinon and its photodegradation products, Toxicol. Lett., 193 (1), 9–18.

[2] Neishabouri, E.Z., Hassan, Z.M., Azizi, E., and Ostad, S.N., 2004, Evaluation of immunotoxicity induced by diazinon in C57bl/6 mice, Toxicology, 196 (3), 173–179.

[3] Muranli, F.D., Kanev, M., and Ozdemir, K., 2015, Genotoxic effects of diazinon on human peripheral blood lymphocytes, Arh. Hig. Rada Toksikol., 66 (2), 153–158.

[4] Harchegani, A.B., Rahmani, A., Tahmasbpour, E., Kabootaraki, H.B., Rostami, H., and Shahriary, A., 2018, Mechanisms of diazinon effects on impaired spermatogenesis and male infertility, Toxicol. Ind. Health, 34 (9), 653–664.

[5] Ezzi, L., Haouas, Z., Salah, I.B., Sakly, A., Grissa, I., Chakroun, S., Kerkeni, E., Hassine, M., Mehdi, M., and Cheikh, H.B., 2016, Toxicopathic changes and genotoxic effects in liver of rat following exposure to diazinon, Environ. Sci. Pollut. Res., 23 (11), 11163–11170.

[6] Jonidi-Jafari, A., Shirzad-Siboni, M., Yang, J.K., Naimi-Joubani, M., and Farrokhi, M., 2015, Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite, J. Taiwan Inst. Chem. Eng., 50, 100–107.

[7] Li, P.C.H., Swanson, E.J., and Gobas, F.A.P.C., 2002, Diazinon and its degradation products in agricultural water courses in British Columbia, Canada, Bull. Environ. Contam. Toxicol., 69 (1), 59–65.

[8] Čolović, M.B., Krstić, D.Z., Ušćumlić, G.S., and Vasić, V.M., 2011, Single and simultaneous exposure of acetylcholinesterase to diazinon, chlorpyrifos and their photodegradation products, Pestic. Biochem. Physiol., 100 (1), 16–22.

[9] Ahmed, M.A.E., Ahmed, H.I., and El-Morsy, E.M., 2013, Melatonin protects against diazinon-induced neurobehavioral changes in rats, Neurochem. Res., 38 (10), 2227–2236.

[10] Hariri, A.T., Moallem, S.A., Mahmoudi, M., Memar, B., and Hosseinzadeh, H., 2010, Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: Protective effects of crocin and safranal, Food Chem. Toxicol., 48 (10), 2803–2808.

[11] Wu, J., Lan, C., and Chan, G.Y.S., 2009, Organophosphorus pesticide ozonation and formation of oxon intermediates, Chemosphere, 76 (9), 1308–1314.

[12] Yahiat, S., Fourcade, F., Brosillon, S., and Amrane, A., 2011, Photocatalysis as a pre-treatment prior to a biological degradation of cyproconazole, Desalination, 281, 61–67.

[13] Mirmasoomi, S.R., Ghazi, M.M., and Galedari, M., 2017, Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method, Sep. Purif. Technol., 175, 418–427.

[14] Beduk, F., Aydin, M.E., and Ozcan, S., 2012, Degradation of malathion and parathion by ozonation, photolytic ozonation, and heterogeneous catalytic ozonation processes, Clean (Weinh), 40 (2), 179–187.

[15] Chen, H., Shen, M., Chen, R., Dai, K., and Peng, T., 2011, Photocatalytic degradation of commercial methyl parathion in aqueous suspension containing La‐doped TiO2 nanoparticles, Environ. Technol., 32 (13), 1515–1522.

[16] Sakkas, V.A., Dimou, A., Pitarakis, K., Mantis, G., and Albanis, T., 2005, TiO2 photocatalyzed degradation of diazinon in an aqueous medium, Environ. Chem. Lett., 3 (2), 57–61.

[17] Nadia, E.M., Moustapha, B., and Yahia, A.I., 2018, UV/TiO2 photocatalytic oxidation of commercial pesticide in aqueous solution, Am. J. Innov. Res. Appl. Sci., 7 (1), 36–43.

[18] Kumar, S.G., and Devi, L.G., 2011, Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 115 (46), 13211–13241.

[19] Xu, Q.C., Wellia, D.V., Yan, S., Liao, D.W., Lim, T.M., and Tan, T.T.Y., 2011, Enhanced photocatalytic activity of C-N-codoped TiO2 films prepared via an organic-free approach, J. Hazard. Mater., 188 (1-3), 172–180.

[20] Safni, Wellia, D.V., Komala, P.S., and Putri, R.A., 2015, Degradation of yellow-GCN by photolysis with UV-light and solar irradiation using C-N-codoped TiO2 catalyst, J. Chem. Pharm. Res., 7 (11), 306–311.

[21] Kakroudi, M.A., Kazemi, F., and Kaboudin, B., 2014, Highly efficient photodeoximation under green and blue LEDs catalyzed by mesoporous C-N-codoped nano TiO2, J. Mol. Catal. A: Chem., 392, 112–119.

[22] Chen, D., Jiang, Z., Geng, J., Wang, Q., and Yang, D., 2007, Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity, Ind. Eng. Chem. Res., 46 (9), 2741–2746.

[23] Liu, G., Han, C., Pelaez, M., Zhu, D., Liao, S., Likodimos, V., Kontos, A.G., Falaras, P., and Dionysiou, D.D., 2013, Enhanced visible light photocatalytic activity of CN-codoped TiO2 films for the degradation of microcystin-LR, J. Mol. Catal. A: Chem., 372, 58–65.

[24] Dai, G., Liu, S., Liang, Y., Liu, H., Zhong, Z., 2013, A simple preparation of carbon and nitrogen co-doped nanoscaled TiO2 with exposed {001} facets for enhanced visible-light photocatalytic activity, J. Mol. Catal. A: Chem., 368-369, 38–42.

[25] Wu, Y.C., and Ju, L.S., 2014, Annealing-free synthesis of C-N co-doped TiO2 hierarchical spheres by using amine agents via microwave-assisted solvothermal method and their photocatalytic activities, J. Alloys Compd., 604, 164–170.

[26] El-Sheikh, S.M., Khedr, T.M., Hakki, A., Ismail, A.A., Badawy, W.A., and Bahnemann, D.W., 2017, Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen, Sep. Purif. Technol., 173, 258–268.

[27] Wang, X., and Lim, T.T., 2010, Solvothermal synthesis of C–N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor, Appl. Catal., B, 100 (1-2), 355–364.

[28] Wellia, D.V., Fitria, D., and Safni, 2018, C-N-codoped TiO2 synthesis by using peroxo sol gel method for photocatalytic reduction of Cr(VI), J. Pure Appl. Chem. Res., 7 (1), 25–31.

[29] Fitriyani, Y.O., Septiani, U., Wellia, D.V., Putri, R.A., Safni, 2017, Degradasi zat warna direct red-23 secara fotolisis dengan katalis C-N-codoped TiO2, Valensi, 3 (2), 152–159.

[30] Safitri, V.Y., Santoni, A., Wellia, D.V., Khoiriah, and Safni, 2017, Degradation of paracetamol by photolysis using C-N-codoped TiO2, Molekul, 12 (2), 189–195.

[31] Safni, Weillia, D.V., Komala, P.S., Putri, R.A., and Deliza, 2016, Photocatalytic degradation of yellow-GCN dye using C-N-codoped TiO2 thin film in degradation reactor using visible-light irradiation, Der Pharma Chemica, 8 (19), 642–646.

[32] Safni, M., Putri, R.A., Wellia, D.V., and Septiani, U., 2017, Photodegradation of orange F3R dyes: Effect of light sources and the addition of CN-codoped TiO2 catalyst, Der Pharma Chemica, 9 (10), 1–5.

[33] Kumar, A., and Pandey, G., 2017, A review on the factors affecting the photocatalytic degradation of hazardous materials, Mater. Sci. Eng. Int. J., 1 (3), 1–10.

[34] Nakaoka, Y., Katsumata, H., Kaneco, S., Suzuki, T., and Ohta, K., 2012, Photocatalytic degradation of diazinon in aqueous solution by platinized TiO2, Desalin. Water Treat., 13 (1-3), 427–436.

[35] Daneshvar, N., Aber, S., Seyed Dorraji, M.S., Khataee, A.R., and Rasoulifard, M.H., 2007, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Sep. Purif. Technol., 58 (1), 91–98.

[36] Jafari, S.J., Moussavi, G., and Hossaini, H., 2016, Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process, Desalin. Water. Treat., 57 (8), 3782–3790.

[37] Ahmed, S., Rasul, M.G., Brown, R., and Hashib, M.A., 2011, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review, J. Environ. Manage., 92 (3), 311–330.

[38] Jonidi-Jafari, A., Gholami, M., Farzadkia, M., Esrafili, A., and Shirzad-Siboni, M., 2017, Application of Ni-doped ZnO nanorods for degradation of diazinon: Kinetics and by-products, Sep. Sci. Technol., 52 (15), 2395–2406.

[39] Speight, J.G., 2017, “Transformation of inorganic chemicals in the environment” in Environmental Inorganic Chemistry for Engineers, 1st Ed., Butterworth-Heinemann, 333–382.

[40] Kalantary, R.R., Shahamat, Y.D., Farzadkia, M., Esrafili, A., and Asgharnia, H., 2015, Photocatalytic degradation and mineralization of diazinon in aqueous solution using nano-TiO2 (Degussa, P25): Kinetic and statistical analysis, Desalin. Water. Treat., 55 (2), 555–563.

[41] Shirzad-Siboni, M., Jonidi-Jafari, A., Farzadkia, M., Esrafili, A., and Gholami, M., 2017, Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide: Kinetics and reaction pathways, J. Environ. Manage., 186 (Pt 1), 1–11.

[42] Mohagheghian, A., Karimi, S.A., Yang, J.K., and Shirzad-Siboni, M., 2016, Photocatalytic degradation of diazinon by illuminated WO3 nanopowder, Desalin. Water. Treat., 57 (18), 8262–8269.

[43] Baneshi, M.M., Rezaei, S., Sadat, A., Mousavizadeh, A., Barafrashtehpour, M., and Hekmatmanesh, H., 2017, Investigation of photocatalytic degradation of diazinon using titanium dioxide (TiO2) nanoparticles doped with iron in the presence of ultraviolet rays from the aqueous solution, Biosci. Biotechnol. Res. Commun., 1, 60–67.

[44] Laoufi, N.A., Tassalit, D., and Bentahar, F., 2008, The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor, Global NEST J., 10 (3), 404–418.

[45] Tabasideh, S., Maleki, A., Shahmoradi, B., Ghahremani, E., and McKay, G., 2017, Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles, Sep. Purif. Technol., 189, 186–192.

[46] Sari, M.I., Agustina, T.E., Melwita, E., and Aprianti, T., 2017, Color and COD degradation in photocatalytic process of procion red by using TiO2 catalyst under solar irradiation, AIP Conf. Proc., 1903, 040017.

[47] Wardhani, S., Purwonugroho, D., Fitri, C.W., and Prananto, Y.P., 2018, Effect of pH and irradiation time on TiO2-chitosan activity for phenol photo-degradation, AIP Conf. Proc., 2021, 050009.

[48] Hossaini, H., Moussavi, G., and Farrokhi, M., 2017, Oxidation of diazinon in cns-ZnO/LED photocatalytic process: Catalyst preparation, photocatalytic examination, and toxicity bioassay of oxidation by-products, Sep. Purif. Technol., 174, 320–330.

[49] Shemer, H., and Linden, K.G., 2006, Degradation and by-product formation of diazinon in water during UV and UV/H2O2 treatment, J. Hazard. Mater., 136 (3), 553–559.

[50] Žabar, R., 2012, Persistence, degradation and toxicity of transformation products of selected insecticides, Dissertation, University of Nova Gorica, Slovenia.

[51] Rajamanickam, D., and Shanthi, M., 2016, Photocatalytic degradation of an organic pollutant by zinc oxide – solar process, Arabian J. Chem., 9 (Suppl. 2), S1858–S1868.

[52] Syafei, D., Sugiarti, S., Darmawan, N., and Khotib, M., 2017, Synthesis of TiO2/carbon nanoparticle (C-dot) composites as active catalysts for photodegradation of persistent organic pollutant, Indones. J. Chem., 17 (1), 37–42.



DOI: https://doi.org/10.22146/ijc.43982

Article Metrics

Abstract views : 3011 | views : 2516


Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.