Extraction of Omega-3 Fatty Acid from Jade Perch (Scortum barcoo) Using Enzymatic Hydrolysis Technique


Nur Izzati Iberahim(1*), Yee Chee Hann(2), Zainab Hamzah(3), Khairunissa Syairah Ahmad Sohaimi(4)

(1) Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP)
(2) Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP)
(3) Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP)
(4) Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP)
(*) Corresponding Author


Extraction of omega-3 fatty acid from Jade Perch (Scortum barcoo) using enzymatic hydrolysis techniques are expected to be more economically possible techniques due to the uses of the enzyme with the characteristic of environmentally friendly, reusable and less energy required during large-scale production. Design of Experiments (DOE) was used to study the effect of process parameters such as the concentration of alcalase (0.5–1.5%), temperature (50–70 °C) and pH (6.5–8.5) towards the yield of oil. The findings showed 16.55% of oil yield was extracted from the jade perch under an optimum condition at 50 °C, 6.5 pH with 0.5% of enzyme concentration for 2 h incubation time. The fish oil was then undergone enzymatic concentration of omega-3 FA using lipase from Candida rugosa. The acid value and peroxide value of the fish oil was 71.422 mg KOH/g and 0.799 meq/kg, while the acid and peroxide value of the omega-3 concentrated oil was lower to 49.074 mg KOH/g and 0.399 meq/kg. The FTIR spectrum showed the presence of C–H stretch, =C–H stretch and C=O stretch bond justified the existence of lipids as it presents of alkanes, alkene, and carboxylic acids functional group. At the same time, GC-MS analysis showed the fish oil contains higher total PUFA content and omega-3 fatty acid content than omega-3 concentrated oil.


Scortum barcoo; jade perch; lipase; omega-3 fatty acid; enzymatic hydrolysis

Full Text:

Full Text PDF


[1] Arvanitoyannis, I.S., Tserkezou, P., 2013, “Fish Waste Management” in Seafood Processing: Technology, Quality, and Safety, Eds., Boziaris, I.S., John Wiley & Sons, Ltd., 263–309.

[2] Zhang, J., 2009, Analysis and Characterization of Consumer Products by FTIR, Chemometric and Two Dimensional ATR-FTIR Correlation Spectroscopy, Dissertation, New Brunswick, Rutgers University, The State University of New Jersey.

[3] Ihwan, M.Z., Syahnon, M., Fakhrul, I.M., Marina, H., and Ambak, M.A., 2016, New report on Trichodiniasis (Protozoa: Ciliophora: Peritrichida) in jade perch; Scortum barcoo from Peninsular Malaysia, J. Fish. Aquat. Sci., 11 (6), 437–443.

[4] Gapinski, F., 2010, Jade Perch–The Perfect Aquaponics Fish!, http://www.ecofilms.com.au/jade-perch-the-perfect-aquaponics-fish/, accessed on 1 March 2017.

[5] Vang, B., 2015, Recovery and properties of oil from the copepod Calanus finmarchicus, Dissertation, The Arctic University of Norway.

[6] Bhandari, K., Chaurasia, S.P., and Dalai, A.K., 2013, Hydrolysis of tuna fish oil using Candida rugosa lipase for producing fatty acids containing DHA, IJANS, 2 (3), 1–12.

[7] Mohanarangan, A.B., 2012, Extraction of Omega-3 Fatty Acids from Atlantic Herring (Clupea harengus), Thesis, Dalhousie University, Halifax, Nova Scotia.

[8] Sun, H., Chen, Z., Wen, P., Lei, H., Shi, J., Huang, M., and Wang, J., 2012, Optimization of enzymatic hydrolysis conditions for preparation of gingko peptides from ginkgo nuts, Int. J. Food Eng., 8 (1), 1–15.

[9] Ramakrishnan, V.V., Ghaly, A.E., Brooks, M.S., and Budge, S.M., 2013, Extraction of proteins from mackerel fish processing waste using alcalase enzyme, J. Bioprocess Biotechniq., 3 (2), 1000130.

[10] Ogunbusola, E.M., Fagbemi, T.N., and Osundahunsi, O.F., 2017, Fatty acid characterisation, sterol composition and spectroscopic analysis of selected Cucurbitaceae seed oils, Int. Food Res. J., 24 (2), 696–702.

[11] Vongsvivut, J., Heraud, P., Zhang, W., Kralovec, J.A., Mcnaughton, D., and Barrow, C.J., 2012, Quantitative determination of fatty acid compositions in micro-encapsulated fish-oil supplements using Fourier transform infrared (FTIR) spectroscopy, Food Chem., 135 (2), 603–609.

[12] Hamzah, Z., Jeyaraman, S., Ibrahim, N.H., Hashim, O., Lee, B.B., and Hussin, K., 2013, A rapid technique to determine purity of edible bird nest, Adv. Environ. Biol., 7 (12), 3758–3765.

[13] Deepika, D., 2014, The potential of fish processing wastes for biodiesel production, Final Report, Marine Institute of Memorial University of Newfoundland, Canada.

[14] Rubio-Rodríguez, N., Beltrán, S., Jaime, I., de Diego, S.M., Sanz, M.T., and Carballido, J.R., 2010, Production of omega-3 polyunsaturated fatty acid concentrates: A review, Innovative Food Sci. Emerg. Technol., 11 (1), 1–12.

[15] Su Pak, C., Bragadottir, M., 2005, Stability and quality of fish oil during typical domestic application, The United Nations University, Fisheries Training Programme, Iceland.

[16] Iberahim, N.I., Hamzah. Z., Yin, Y.J, Sohaimi, K.S.A., 2018, Extraction and characterization of omega-3 fatty acid from catfish using enzymatic hydrolysis technique, MATEC Web Conf., 187, 01005.

[17] Rustan, A.C., and Drevon, C.A., 2005, “Fatty Acids: Structure and Properties” in Encyclopedia of Life Sciences, John Wiley & Sons, Ltd., 1–7.

DOI: https://doi.org/10.22146/ijc.40903

Article Metrics

Abstract views : 3699 | views : 2800

Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.