Selective Hierarchical Aluminosilicates for Acetalization Reaction with Propylene Glycol

https://doi.org/10.22146/ijc.40106

Hartati Hartati(1), Mardi Santoso(2), Hadi Nur(3), Leaw Wai Loon(4), Hasliza Bahruji(5), Imroatul Qoniah(6), Didik Prasetyoko(7*)

(1) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jl. Mulyorejo, Surabaya, 60115, Indonesia
(2) Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Keputih, Surabaya 60111, Indonesia
(3) Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
(4) Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
(5) Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link Road BE1410, Brunei Darussalam
(6) Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Keputih, Surabaya 60111, Indonesia
(7) Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Keputih, Surabaya 60111, Indonesia
(*) Corresponding Author

Abstract


Hierarchical micro-mesoporous aluminosilicates nanoparticles were synthesized at different of Si/Al ratios and were directly used as a solid acid catalyst for acetalization reaction with propylene glycol. TEM and N2 adsorption analysis of the resulting aluminosilicates revealed the formation of the hierarchical structure occurs on the Si/Al ratio increases the formation of mesoporous within the structure of aluminosilicate. The aluminosilicates exhibit high selectivity towards acetalization reaction in comparison with the homogeneous PTSA. The presence of mesoporous structures is crucial for increased conversion and selectivity of the reaction which presumably due to the improved diffusion of substrate to reach acid sites.


Keywords


hierarchical aluminosilicates; Si/Al; acetalization; propylene glycol

Full Text:

Full Text PDF


References

[1] Rowe, D.J., 2005, “Aroma chemicals I: C, H, O compounds” in Chemistry and Technology of Flavors and Fragrances, CRC Press Blackwell Publishing Ltd., Canada, 56-84.

[2] Climent, M.J., Corma, A., and Velty, A., 2004, Synthesis of hyacinth, vanilla, and blossom orange fragrances: The benefit of using zeolites and delaminated zeolites as catalysts, Appl. Catal., A, 263 (2), 155–161.

[3] Justus, J., Vinu, A., Devassy, B.M., Balasubramanian, V.V., Bohringer, W., Fletcher, J., and Halligudi, S.B., 2008, Highly efficient and chemoselective catalyst system for the synthesis of blossom orange fragrance and flavoring, Catal. Commun., 9 (7), 1671–1675.

[4] Umbarkar, S.B., Kotbagi, T.V., Biradar, A.V., Pasricha, R., Chanale, J., Dongare, M.K., Mamede, A.S., Lancelot, C., and Payen, E., 2009, Acetalization of glycerol using mesoporous MoO3/SiO2 solid acid catalyst, J. Mol. Catal. A: Chem., 310 (1-2), 150–158.

[5] Corma, A., 1997, Solid acid catalysts, Curr. Opin. Solid State Mater. Sci., 2 (1), 63–75.

[6] Sheldon, R.A., Arends, I.W.C.E., and Hanefeld, U., 2007, Green Chemistry and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

[7] Augustine, J.K., Bombrun, A., Sauer, W.H.B., and Vijaykumar, P., 2012, Highly efficient and chemoselective acetalization and thioacetalization of aldehydes catalyzed by propylphosphonic anhydride (®T3P) at room temperature, Tetrahedron Lett., 53 (37), 5030–5033.

[8] Climent, M.J., Corma, A., Velty, A., and Susarte, M., 2000, Zeolites for the production of fine chemicals: Synthesis of the fructone fragrancy, J. Catal., 196 (2), 345–351.

[9] Rodriguez, I., Climent, M.J., Iborra, S., Fornds, V., and Corma, A., 2000, Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols, J. Catal., 192 (2), 441–447.

[10] Thomas, B., Prathapan, S., and Sugunan, S., 2004, Effect of pore size on the catalytic activities of K-10 clay and H-zeolites for the acetalization of ketones with methanol, Appl. Catal., A, 277 (1-2), 247–252.

[11] Liang, X.Z., Gao, S., Wang, W.J., Cheng, W.P., and Yang, J.G., 2007, Comparative research on the catalytic activities of different molecular sieves for acetalization and ketalization, Chin. Sci. Bull., 52 (13), 1780–1784.

[12] Manjunathan, P., Maradur, S.P., Halgeri, A.B., and Shanbhag, G.V., 2015, Room temperature synthesis of solketal from acetalization of glycerol with acetone: Effect of crystallite size and the role of acidity of beta zeolite, J. Mol. Catal. A: Chem., 396, 47–54.

[13] Freitas, F.A., Licursi, D., Lachter, E.R., Galletti, A.M.R., Antonetti, C., Brito, T.C., Sandra, R., and Nascimento, R.S.V., 2016, Heterogeneous catalysis for the ketalisation of ethyl levulinate with 1,2-dodecanediol: Opening the way to a new class of bio-degradable surfactants, Catal. Commun., 73, 84–87.

[14] Hartati, Prasetyoko, D., Santoso, M., Bahruji, H., and Triwahyono, S., 2014, Highly active aluminosilicates with a hierarchical porous structure for acetalization of 3,4-dimethoxybenzaldehyde, Jurnal Teknologi, 69 (5), 2180–3722.

[15] Hartati, Prasetyoko, D., and Santoso, M., 2016, Cyclic acetalization of furfural on porous aluminosilicate acid catalysts, Indones. J. Chem., 16 (3), 289–296.

[16] Eimer, G.A., Díaz, I., Sastre, E., Casuscelli, S.G., Crivello, M.E., Herrero, E.R., and Perez-Pariente J., 2008, Mesoporous titanosilicates synthesized from TS-1 precursors with enhanced catalytic activity in the a-pinene selective oxidation, Appl. Catal., A, 343 (1-2), 77–86.

[17] Gonçalves, M.L., Dimitrov, L.D., Jordão, M.H., Wallau, M., and Urquieta-González, E.A., 2008, Synthesis of mesoporous ZSM-5 by crystallisation of aged gels in the presence of cetyltrimethylammonium cations, Catal. Today, 133-135, 69–79.

[18] Emeis, C.A., 1993, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal., 141 (2), 347–354.

[19] Thommes, M., 2010, Physical adsorption characterization of nanoporous materials, Chem. Ing. Tech., 82 (7), 1059–1073.

[20] Jin, F., and Li, Y., 2009, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule, Catal. Today, 145 (1-2), 101–107.

[21] Hensen, E.J.M., Poduval, D.G., Degirmenci, V., Ligthart, D.A.J.M., Chen, W., Maugé, F., Rigutto, M.S., and van Veen, J.A.R., 2012, Acidity characterization of amorphous silica-alumina, J. Phys. Chem. C, 116 (40), 21416−21429.

[22] Almutairi, S.M.T., Mezari, B., Filonenko, G.A., Magusin, P.C.M.M., Rigutto, M.S., Pidko, E.A., and Hensen, E.J.M., 2013, Influence of extra framework aluminum on the Brønsted acidity and catalytic reactivity of faujasite zeolite, ChemCatChem, 5 (2), 452–466.

[23] Li, C., Wang, Y., Shi, B., Ren, J., Liu, X., Wang, Y., Guo, Y., Guo, Y., and Lu, G., 2009, Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals, Microporous Mesoporous Mater., 117 (1-2), 104–110.

[24] Zhu, H., Liu, Z., Kong, D., Wang, Y., Yuan, X., and Xie, Z., 2009, Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method, J. Colloid Interface Sci., 331 (2), 432–438.

[25] McMurry, J., 1996, Organic Chemistry, 4th ed., Brooks/Cole Publishing Company, USA, 726–727.

[26] Farnetti, E., Di Monte, R., and Kašpar, J., 2009, “Homogeneous and Heterogeneous Catalysis” in Inorganic and Bio-Inorganic Chemistry, Encyclopedia of Life Support Systems (EOLSS), Vol. II, 50–86.



DOI: https://doi.org/10.22146/ijc.40106

Article Metrics

Abstract views : 417 | views : 386


Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.