Effect of Immobilization Method on the Growth of Chlorella vulgaris and Fatty Acid Profile for Biodiesel Production
Nur Hanani Rushan(1), Nur Hidayah Mat Yasin(2*), Noor Raihana Abu Sepian(3), Farhan Mohd Said(4), Nurafifah Izzati Shafei(5)
(1) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(2) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(3) FFaculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(4) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(5) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Onay, M., Sonmez, C., Oktem, H.A., and Yucel, M., 2016, Evaluation of various extraction techniques for efficient lipid recovery from thermo-resistant microalgae, Hindakia, Scenedesmus and Micractinium species – Comparison of lipid extraction methods from microalgae, Am J. Anal. Chem., 7 (2), 141–150.
[2] Singh, N.K., and Dhar, D.W., 2011, Microalgae as second generation biofuel. A review, Agron. Sustainable Dev., 31 (4), 605–629.
[3] Singh, M., Shukla, R., and Das, K., 2013, ”Harvesting of Microalgal Biomass” in Biotechnological Applications of Microalgae: Biodiesel and Value Added Products, 1st ed., Eds., Bux, F., CRC Press, USA, 77–87.
[4] Amin, S., 2009, Review on biofuel oil and gas production processes from microalgae, Energy Convers. Manage., 50 (7), 1834–1840.
[5] Brennan, L., and Owende, P., 2010, Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products, Renewable Sustainable Energy Rev., 14 (2), 557–577.
[6] Moreno-Garrido, I., 2008, Microalgae immobilization: Current techniques and uses, Bioresour. Technol., 99 (10), 3949–3964.
[7] Priyadarshani, I., and Rath, B., 2012, Commercial and industrial applications of micro algae – A review, J. Algal Biomass Util., 3(4), 89–100.
[8] Griffiths, M.J., Dicks, R.G., Richardson, C., and Harrison, S.T.L., 2011, “Advantages and Challenges of Microalgae as a Source of Oil for Biodiesel” in Biodiesel - Feedstocks Processing Technologies, Eds., Stoytcheva M., and Montero, G., IntechOpen, 177–200.
[9] Månsson, S., 2012, Cultivation of Chlorella vulgaris in nutrient solution from greenhouse tomato production, Thesis, Department of Horticulture, Swedish University of Agricultural Sciences, 32.
[10] Barros, A.I., Gonçalves, A.L., Simões, M., and Pires, J.C.M., 2015, Harvesting techniques applied to microalgae: A review, Renewable Sustainable Energy Rev., 41, 1489–1500.
[11] Ramaraj, S., Hemaiswarya, S., Raja, R., Ganesan, V., Anbazhagan, C., Carvalho, I.S., and Juntawong, N., 2015, “Microalgae as an Attractive Source for Biofuel Production” in Environmental Sustainability - Role of Green Technologies, Eds., Thangavel, P., and Sridevi, G., Springer India, 129–157.
[12] Pittman, J.K., Dean, A.P., and Osundeko, O., 2011, The potential of sustainable algal biofuel production using wastewater resources, Bioresour. Technol., 102 (1), 17–25.
[13] Xu, L., Guo, C., Wang, F., Zheng, S., and Liu, C.Z., 2011, A simple and rapid harvesting method for microalgae by in situ magnetic separation, Bioresour Technol., 102 (21), 10047–10051.
[14] Singh, G., and Patidar, S.K., 2018, Microalgae harvesting techniques: A review, J. Environ. Manage., 217, 499–508.
[15] Ahmad, A.L., Yasin, N.H.M., Derek, C.J.C., and Lim, J.K., 2014, Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock, Environ. Technol., 35 (17), 2244–2253.
[16] Al Hattab, M., Ghaly, A., and Hammoud, A., 2015, Microalgae harvesting methods for industrial production of biodiesel: Critical review and comparative analysis fundamentals of renewable energy and applications, J. Fundam. Renewable Energy Appl., 5 (2), 1000154.
[17] Lam, M.K., and Lee, K.T., 2012, Immobilization as a feasible method to simplify the separation of microalgae from water for biodiesel production, Chem. Eng. J., 191, 263–268.
[18] Krajewska, B., 2004, Application of chitin- and chitosan-based materials for enzyme immobilizations: A review, Enzyme Microb. Technol., 35 (2-3), 126–139.
[19] Moreno-Garrido, I., Campana, O., Lubián, L.M., and Blasco, J., 2005, Calcium alginate immobilized marine microalgae: Experiments on growth and short-term heavy metal accumulation, Mar. Pollut. Bull., 51 (8-12), 823–829.
[20] Arica, M.Y., 2000, Immobilization of polyphenol oxidase on carboxymethylcellulose hydrogel beads: Preparation and characterization, Polym. Int., 49 (7), 775–781.
[21] Hameed, M.S.A., and Ebrahim, O.H., 2007, Biotechnological potential uses of immobilized algae, Int. J. Agric. Biol., 9 (1), 183–192.
[22] Abu Sepian, N.R., Mat Yasin, N.H., Zainol, N., Rushan, N.H., Ahmad, A.L., 2019, Fatty acid profile from immobilised Chlorella vulgaris cells in different matrices, Environ. Technol., 40 (9), 1110–1117.
[23] Eroglu, E., Smith, S.M., and Raston, C.L., 2015, “Application of Various Immobilization Techniques for Algal Bioprocess” in Biomass and Biofuels from Microalgae. Biofuels and Biorefinery Technologies, Vol. 2, Eds., Moheimani, N., McHenry, M., de Boer, K., and Bahri, P., Springer, Cham, 19–44.
[24] Johnston, D., Kumar, P., Yahya, E., Toit, L.C., and Pillay, V., 2013, Modulation of the nano-tensile mechanical properties of co-blended amphiphilic alginate fibers as oradurable biomaterials for specialized biomedical application, J. Mech. Behav. Biomed. Mater., 23, 80–102.
[25] Kaparapu, J., and Rao, G.M.N., 2016, Applications of immobilized algae, J Algal Biomass Util., 7 (2), 122–128.
[26] Feng, Y., Li, C., and Zhang, D., 2011, Lipid production of Chlorella vulgaris cultured in artificial wastewater medium, Bioresour. Technol., 102 (1), 101–105.
[27] Griffiths, M.J., and Harrison, S.T.L., 2009, Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., 21 (5), 493–507.
[28] Knothe, G., 2006, Analyzing biodiesel: Standards and other methods, J. Am. Oil Chem. Soc., 83 (10), 823–833.
[29] Knothe, G., 2005, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters, Fuel Process. Technol., 86 (10), 1059–1070.
[30] Rashid, U., Anwar, F., Moser, B.R., and Knothe, G., 2008, Moringa oleifera oil: A possible source of biodiesel, Bioresour. Technol., 99 (17), 8175–8179.
DOI: https://doi.org/10.22146/ijc.39800
Article Metrics
Abstract views : 4233 | views : 3058Copyright (c) 2019 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.