Effect of Molar Ratio on Structural and Size of ZnO/C Nanocomposite Synthesized Using a Colloidal Method at Low Temperature

https://doi.org/10.22146/ijc.37932

Siham Lhimr(1*), Saidati Bouhlassa(2), Saidati Bouhlassa(3), Saidati Bouhlassa(4), Bouchaib Ammary(5), Bouchaib Ammary(6), Bouchaib Ammary(7)

(1) Department of Chemistry, Mohammed V University, 4 Avenue Ibn Battouta, BP 1014 RP, Rabat 10000, Morocco
(2) Department of Chemistry, Mohammed V University, 4 Avenue Ibn Battouta, BP 1014 RP, Rabat 10000, Morocco
(3) Department of Chemistry, Mohammed V University, 4 Avenue Ibn Battouta, BP 1014 RP, Rabat 10000, Morocco
(4) Department of Chemistry, Mohammed V University, 4 Avenue Ibn Battouta, BP 1014 RP, Rabat 10000, Morocco
(5) Department of Chemistry, Mohammed V University, 4 Avenue Ibn Battouta, BP 1014 RP, Rabat 10000, Morocco
(6) Department of Chemistry, Mohammed V University, 4 Avenue Ibn Battouta, BP 1014 RP, Rabat 10000, Morocco
(7) Department of Chemistry, Mohammed V University, 4 Avenue Ibn Battouta, BP 1014 RP, Rabat 10000, Morocco
(*) Corresponding Author

Abstract


In this paper we study the effects of different molar ratio R of Zn2+ to OH(R= nOH–/nZn(II) of the precursor was investigated by varying the amount of NaOH. Samples have been synthesized by the colloidal method at room temperature using (ZnCl2), citric acid (C6H8O9·H2O) and sodium hydroxide (NaOH). The formation of ZnO/C composite was characterized by The X-ray diffraction patterns indicated a high crystallinity and nanocrystalline size of ZnO with hexagonal wurtzite structure. The morphologies of the particles have been studied with a scanning electronic microscopy (SEM). The existence of carbon into the composite was detected by FTIR and EDS. The optical band gap of various ZnO/C composite was calculated from UV-Visible absorption measurement varied in the range 3.301 to 3.282 eV according to R values.

Keywords


ZnO/C composite; cow-temperature synthesis; colloidal method; molar ratio R

Full Text:

Full Text PDF


References

[1] Liu, R., Vertegel, A.A., Bohannan, E.W., Sorenson, T.A., and Switzer, J.A., 2001, Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold, Chem. Mater., 13 (2), 508–512.

[2] Su, Y.K., Peng, S.M., Jiet, L.W., Wu, C.Z., Cheng, W.B., and Liu, C.H., 2010, Ultraviolet ZnO nanorod photosensors, Langmuir, 26 (1), 603–606.

[3] Chen, L.C., Tu, Y.J., Wang, Y.S., Kan, R.S., and Huang, C.M., 2008, Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination, J. Photochem. Photobiol., A, 199 (2-3), 170–178.

[4] Lavand, A.B., and Malghe, Y.S., 2015, Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite, J. Saudi Chem. Soc., 19 (5), 471–478.

[5] Zhang, J., Ni, S., Tang, J., Yang, X., and Zhang, L., 2016, The preparation of NiO/C-Ni composite as a binder-free anode for lithium-ion batteries, Mater. Lett., 176, 21–24.

[6] Dicks, A.L., 2006, The role of carbon in fuel cells, J. Power Sources, 156 (2), 128–141.

[7] Jänes, A., Kurig, H.S., and Lust, E., 2007, Characterization of activated nanoporous carbon for supercapacitor electrode materials, Carbon, 45 (6), 1226–1233.

[8] Chen, T., Yu, S., Fang, X., Huang, H., Li, L., Wang, X., and Wang, H., 2016, Enhanced photocatalytic activity of C@ZnO core-shell nanostructures and its photoluminescence property, Appl. Surf. Sci., 389, 303–310.

[9] Moghaddam, F.M., and Saeidian, H., 2007, Controlled microwave-assisted synthesis of ZnO nanopowder and its catalytic activity for O-acylation of alcohol and phenol, Mater. Sci. Eng., B, 139 (2-3), 265–269.

[10] Hu, Y., and Chen, H.J., 2008, Preparation and characterization of nanocrystalline ZnO particles from hydrothermal process, J. Nanopart. Res., 10 (3), 401–407.

[11] Cai, K.F., He, X.R., and Zhang, L.C., 2008, Fabrication, properties and sintering of ZnO nanopowder, Mater. Lett., 62 (8-9), 1223–1225.

[12] Darezereshki, E., Alizadeh, M., Bakhtiari, F., Schaffie, M., and Ranjbar, M., 2011, A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions, Appl. Clay Sci., 54 (1), 107–111.

[13] Wang, H., Li, C., Zhao, H., Li, R., and Liu, J., 2013, Synthesis, characterization, and electrical conductivity of ZnO with different morphologies, Powder Technol., 239, 266–271.

[14] Ghorbani, H.R., Mehr, F.P., Pazoki, H., and Rahmani, B.M., 2015, Synthesis of ZnO nanoparticles by precipitation method, Orient. J. Chem., 31 (2), 1219–1221.

[15] Vaseem, M., Umar, A., and Hahn, Y.B., 2010, “ZnO Nanoparticles: Growth, Properties, and Applications” in Metal Oxide Nanostructures and Their Applications, Eds., Umar. A., and Hahn, Y.B., Vol. 5, American Scientific Publishers, 1–36.

[16] Sperling, R.A., and Parak, W.J., 2010, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles, Philos. Trans. R. Soc. London, Ser. A, 368 (1915), 1333–1383.

[17] Fiedot, M., Rac, O., Suchorska-Woźniak, P., Karbownik, I., and Teterycz, H., 2014, “Polymer -Surfactant Interactions and Their Influence on Zinc Oxide Nanoparticles Morphology” in Manufacturing Nanostructures, Eds., Ahmed, W., and Ali, N., One Central Press, UK, 108–128.

[18] Cho, S., Jang, J.W., Jung, S.H., Lee, B.R., Oh, E., and Lee, K.H., 2009, Precursor effects of citric acid and citrates on ZnO crystal formation, Langmuir, 25 (6), 3825–3881.

[19] Wang, L., Zhao, D., Zhang, M., Wang, C., Tang, K., Zhang, X., and Xu, J., 2014, Zn0.5Co0.5O solid solution nanoparticles with durable life for rechargeable lithium-ion batteries, Nano LIFE, 4 (4), 1441015.

[20] Maensiri, S., Laokul, P., and Promarak, V., 2006, Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dehydrate and poly(vinyl pyrrolidine), J. Cryst. Growth, 289 (1), 102–106.

[21] Deng, Y., Wang, G.S., Li, N., and Guo, L., 2009, Synthesis and red-shifted photoluminescence of single-crystalline ZnO nanowires, J. Lumin., 129 (1), 55–58.

[22] Ianoş, R., Lazău, I., Păcurariu, C., and Sfirloagă, P., 2011, Aqueous combustion synthesis and characterization of ZnO powders, Mater. Chem. Phys., 129 (3), 881–886.

[23] Köseoğlu, Y., Durmaz, Y.C., and Yilgin, R., 2014, Rapid synthesis and room temperature ferromagnetism of Ni-doped ZnO DMS nanoflakes, Ceram. Int., 40 (7), 10685–10691.

[24] Köseoğlu, Y., 2015, PEG-assisted hydrothermal synthesis and characterization of Co0.1Zn0.9O DMS nanoparticles, 373, J. Magn. Magn. Mater., 373, 195–199.

[25] Pankove, J.I., 1971, Optical Processes in Semiconductors, Prentice-Hall, Englewood Cliffs, New Jersey, USA.

[26] Awodugba, A.O., and Ilyas, A.M.O., 2013, Synthesis and characterization of ZnO nanoparticles with zinc chloride as zinc source, Asian J. Nat. Appl. Sci., 2 (2), 41–44.

[27] Bepari, R.A., and Das, B.K., 2013, Synthesis of Nanostructured ZnO using Zinc(II) isonicotinate tetrahydrate as precursor and studies of its photoluminescence properties, Int. J. Eng. Res. Sci. Technol., 2 (4), 120–126.

[28] Kurbanov, S.S., and Kang, T.W., 2010, Spectral behavior of the emission around 3.31 eV (A-line) from ZnO nanocrystals, J. Lumin., 130 (5), 767–770.

[29] Kurbanov, S.S., Panin, G.N., Kim, T.W., and Kang T.W., 2009, Strong violet luminescence from ZnO nanocrystals grown by the low-temperature chemical solution deposition, J. Lumin., 129 (9), 1099–1104.



DOI: https://doi.org/10.22146/ijc.37932

Article Metrics

Abstract views : 43 | views : 44


Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.