Combined Computational and Experimental Study the Effect of Doped Magnesium into Betanine-sensitized TiO2 Photoanode for Dye-Sensitized Solar Cells Application

https://doi.org/10.22146/ijc.36861

Yuly Kusumawati(1*), Nanik Ismi Oktavianti(2), Linda Wati Oktavia(3), Nurul Widiastuti(4), Lukman Atmaja(5), Nur Izzati Abu Bakar(6), Nur Hadi(7)

(1) Department of Chemistry, Institut Teknologi Sepuluh Nopember, ITS Sukolilo campus, Surabaya 60111, East Java, Indonesia
(2) Department of Chemistry, Institut Teknologi Sepuluh Nopember, ITS Sukolilo campus, Surabaya 60111, East Java, Indonesia
(3) Department of Chemistry, Institut Teknologi Sepuluh Nopember, ITS Sukolilo campus, Surabaya 60111, East Java, Indonesia
(4) Department of Chemistry, Institut Teknologi Sepuluh Nopember, ITS Sukolilo campus, Surabaya 60111, East Java, Indonesia
(5) Department of Chemistry, Institut Teknologi Sepuluh Nopember, ITS Sukolilo campus, Surabaya 60111, East Java, Indonesia
(6) Ibnu Sina Institute for Fundamental Science Studies, University Teknologi Malaysia, Skudai, Malaysia
(7) Ibnu Sina Institute for Fundamental Science Studies, University Teknologi Malaysia, Skudai, Malaysia
(*) Corresponding Author

Abstract


A preliminary study of the effect of magnesium-doped into betanine-sensitized TiO2 thin layers has been carried out computationally and experimentally. The computational calculation was performed to observe the effect of magnesium on the interaction molecular of betanine onto TiO2 surface, using Ti12O28H8 model cluster. It was found out that the distance of the oxygen on the anchoring site betanine with the Ti in TiO2/Mg cluster is shortercompare to that one in TiO2 cluster. This result confirms the bond between betanine and TiO2 is stronger in the case of Mg2+ incorporation. The Natural Population Calculation also confirms that the electron transport from betanine to the TiO2 is more facilitated after Mg2+ incorporation. These results are also supported by the HOMO-LUMO profile of TiO2-betanine and TiO2/Mg. The XRD and SEM measurement confirm those are no effect on the TiO2 structure and morphology with the incorporation of Mg2+. The thin-film UV-Vis measurement confirms there is a bandgap sift after the incorporation of Mg.

Keywords


TiO2; Mg-doped; betanine; DSSC

Full Text:

Full Text PDF


References

[1] Shafiee, S., and Topal, E., 2009, When will fossil fuel reserves be diminished?, Energy Policy, 37 (1), 181–189.

[2] Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson H, 2010, Dye-sensitized solar cells, Chem. Rev., 110 (11), 6595–6663.

[3] Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M.K., and Grätzel, M., 2014, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem.,6 (3), 242–247.

[4] Shalini, S., Balasundaraprabhu, R., Kumar, T.S., Prabavathy, N., Senthilarasu, S., and Prasanna, S., 2016, Status and outlook of sensitized solar cells (DSSC): A review, Int. J. Energy Res., 40 (10), 1303–1320.

[5] Ahmad, M.S., Pandey, A.K., and Rahim, N.A., 2017, Advancements in the development of TiO2 photoanodes and its fabrication methods for dye-sensitized solar cells (DSSC) application. A review, Renewable Sustainable Energy Rev., 77, 89–108.

[6] Kusumawati, Y., Martoprawiro, M.A., and Pauporté T., 2014, Effects of graphene in graphene/TiO2 composite films applied to solar cell photoelectrode, J. Phys. Chem. C, 118 (19), 9974–9981.

[7] Ludin, N.A., Mahmoud, A.M.A., Mohamad, A.B., Kadhum, A.A.H., Sopian, K., and Karim, N.S.A., 2014, Review on the development of natural dye photosensitizer for dye-sensitized solar cells, Renewable Sustainable Energy Rev., 31, 386–396.

[8] Luo, P., Niu, H., Zheng, G., Bai, X., Zhang, M., and Wang, W., 2009, From salmon pink to blue natural sensitizers for solar cells: Canna indica L., Salvia splendens, cowberry and Solanum nigrum L., Spectrochim. Acta, Part A, 74 (4), 936–942.

[9] Narayan, M.R., 2012, Review: Dye-sensitized solar cells based on natural photosensitizers, Renewable Sustainable Energy Rev., 16 (1), 208–215.

[10] Calogero, G., Yum, J.H., Sinopoli, A., Di Marco, G., Grätzel, M., and Nazeerudin, M.K., 2012, Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells, Solar Energy, 86 (5), 1563–1575.

[11] Prabavathy, N., Shalini, S., Balasundaraprabhu, R., Velauthapillai, D., Prasanna, S., and Mutuhukumasamy, N., 2017, Enhancement in the photostability of natural dyes for dye-sensitized solar cells (DSSC) applications: a review, Int. J. Energy Res., 41 (10), 1372–1396.

[12] Ma, J.G, Zhang, C.R., Gong, J.J., Wu, Y.Z., Kou, S.Z., Yang, H., Chen, Y.H., Liu, Z.J., and Chen, H.S., 2015, The electronic structures and optical properties of alkaline-earth metals doped anatase TiO2: A comparative study of screened hybrid functional and generalized gradient approximation, Materials, 8 (8), 5508–5525.

[13] Nam, T.V., Trang, N.T., and Cong, B.T., 2012, Mg-doped TiO2 for dye-sensitized solar cell: An electronic structure study, Proc. Natl. Conf. Theor. Phys, 37, 233–242.

[14] Ansari, S.G., Umar, A., Al-Hajry, A., Al-Deyab, S.S., and Ansari, Z.A., 2012, Effect of flower extracts on the optoelectronic properties of Cd and Sn dopes TiO2 nanopowder, Sci. Adv. Mater., 4, 763–770.

[15] Yildizhan, M.M, Sturm S, and Gulgun M.A, 2016, Structural and electronic modification on TiO2 anatase by Li, K or Nb doping below and above the solubility limit, J. Mater. Sci., 51 (12), 5912–5923.

[16] Liu, Y., Zhou, W., Liang, Y., Cui, W., and Wu, P., 2015, Tailoring band structure of TiO2 to enhance photoelectrochemical activity by codoping S and Mg, J. Phys. Chem. C, 119 (21), 11557–11562.

[17] Liu, Q.P., 2014, Photovoltaic performance improvement of dye-sensitized solar cells based on Mg-doped TiO2 thin films, Electrochim. Acta, 129, 459–462.

[18] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., 2009, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford.

[19] McLean, A.D., and Chandler, G.S., 1980, Contracted Gaussian basis sets for molecular calculations. I. Second-row atoms, Z=11–18, J. Chem. Phys., 72 (10), 5639–5648.

[20] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., and Hutchison, G.R., 2012, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform., 4, 17.

[21] Gao, L., Li, Y., Ren, J., Wang, S., Wang, R., Fu, G., and Hu, Y., 2017, Passivation of defect states in anatase TiO2 hollow spheres with Mg doping: Realizing efficient photocatalytic overall water splitting, Appl. Catal., B, 202, 127-133.

[22] Kumar, M., Gupta, A.K., and Kumar, D., 2016, Mg-doped TiO2 thin films deposited by low-cost technique for CO gas monitoring, Ceram. Int., 42 (1), 405–410.

[23] Liu, Z., Jian, Z., Fang, J., Xu, X., and Wu, S., 2012, Low-temperature reverse microemulsion synthesis, characterization, and photocatalytic performance of nanocrystalline titanium dioxide, Int. J. Photoenergy, 2012, 702503.

[24] Mali, S.S., Shinde, P.S., Betty, C.A., Bhosale, P.N., Lee, W.J., and Patil, P.S., 2011, Nanocoral architecture of TiO2 by hydrothermal process: Synthesis and characterization, Appl. Surf. Sci., 257 (23), 9737–9746.

[25] Sengupta, D., Mondal, B., and Mukherjee, K., 2015, Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes, Spectrochim. Acta, Part A, 148, 85–92.

[26] Chen, Y., Zhao, S., Chen, M., Zhang, W., Mao, J., Zhao, Y., Maitz, M.F., Huang, N., and Wang, G, 2015, Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection, Corros. Sci., 96, 67–73.



DOI: https://doi.org/10.22146/ijc.36861

Article Metrics

Abstract views : 5552 | views : 2828


Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.