Synthesis, Structural, Density Functional Theory, and X-Ray Diffraction Study of Zn(II) N-Isopropylbenzyldithiocarbamate: Anti-Corrosion Screening in Acid Media

https://doi.org/10.22146/ijc.34703

Noor Syafiqah Habdul Latif(1), Sheikh Ahmad Izaddin Sheikh Mohd Ghazali(2), Erna Normaya Abdullah(3), Azizul Hakim Lahuri(4), Mohammad Fadzlee Ngatiman(5), Nur Nadia Dzulkifli(6*)

(1) Faculty of Applied Sciences, Universiti Teknologi MARA Negeri Sembilan Branch, Kuala Pilah Campus, 72000 Negeri Sembilan, Malaysia
(2) Faculty of Applied Sciences, Universiti Teknologi MARA Negeri Sembilan Branch, Kuala Pilah Campus, 72000 Negeri Sembilan, Malaysia
(3) Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
(4) Department of Basic Science and Engineering, Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu, 97008 Sarawak, Malaysia
(5) Center for Research and Instrumentation Management (CRIM), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
(6) Faculty of Applied Sciences, Universiti Teknologi MARA Negeri Sembilan Branch, Kuala Pilah Campus, 72000 Negeri Sembilan, Malaysia
(*) Corresponding Author

Abstract


Corrosion of metal is a serious issue across many industries and is considered costly. Acids used during the cleaning process in industries may contribute to metal erosion. Dithiocarbamate is a ligand that can act as a corrosion inhibitor due to the presence of sulfur and nitrogen as electronegative atoms. Zn(II) N-isopropylbenzyldithiocarbamate (Zn[N-isopbenzdtc]2) complex was synthesized through direct synthetic method of < 4 °C and characterized using Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR), Ultraviolet-Visible (UV-Vis), Nuclear Magnetic Resonance (NMR), X-ray crystallography study, molar conductivity, melting point, and gravimetric analysis. Corrosion inhibition of mild steel was studied for different corrosive media (1 M HCl and 1 M H2SO4). The synthesized inhibitor was studied at different concentrations of 1, 2, 3, 4, and 5 mM at 40 °C. As a conclusion, as the inhibitor concentration decreased, the efficiency of the corrosion inhibitor also decreased at a constant temperature. In this study, it showed that the corrosion activity of mild steel in 1 M H2SO4 was higher compared to 1 M HCl due to the higher concentration of H+, which makes H2SO4 more corrosive than HCl.


Keywords


dithiocarbamate; corrosion inhibitor; mild steel; acid

Full Text:

Full Text PDF


References

[1] Obi-Egbedi, N.O., and Obot, I.B., 2013, Xanthione: A new and effective corrosion inhibitor for mild steel in sulphuric acid solution, Arabian J. Chem., 6 (2), 211–223.

[2] Dar, S.H., Thirumaran, S., and Selvanayagam, S., 2015, Synthesis, spectral and X-ray structural studies on Hg(II) dithiocarbamate complexes: A new precursor for HgS nanoparticles, Polyhedron, 96, 16–24.

[3] Kamaludin, N.F., Awang, N., Baba, I., Hamid, A., and Meng, C.K., 2013, Synthesis, characterization and crystal structure of organotin(IV) N-butyl-N-phenyldithiocarbamate compounds and their cytotoxicity in human leukemia cell lines, Pak. J. Biol. Sci., 16 (1), 12–21.

[4] Karthikaiselvi, R., and Subhashini, S., 2012, The water soluble composite poly(vinylpyrrolidone-methylaniline): A new class of corrosion inhibitors of mild steel in hydrochloric acid media, Arabian J. Chem., 10, 627–635.

[5] Mirzakhanzadeh, Z., Kosari, A., Moayed, M.H., Naderi, R., Taheri, P., and Mol, J.M.C., 2018, Enhanced corrosion protection of mild steel by the synergetic effect of zinc aluminum polyphosphate and 2-mercaptobenzimidazole inhibitors incorporated in epoxy-polyamide coatings, Corros. Sci., 138, 372–379.

[6] Li, J., and Buchheit, R., 2016, Development of zinc ferrocyanide ion exchange compounds for corrosion-inhibiting and sensing pigments, Prog. Org. Coat., 104, 210–216.

[7] Srimathi, M., Rajalakshmi, R., and Subhashini, S., 2014, Polyvinyl alcohol–sulphanilic acid water soluble composite as corrosion inhibitor for mild steel in hydrochloric acid medium, Arabian J. Chem., 7 (5), 647–656.

[8] Ansari, K.R., and Quraishi, M.A., 2014, Bis-schiff bases of isatin as new and environmentally benign corrosion inhibitor for mild steel, J. Ind. Eng. Chem., 20 (5), 2819–2829.

[9] Hussin, M.H., Jain Kassim, M., Razali, N.N., Dahon, N.H., and Nasshorudin, D., 2016, The effect of Tinospora crispa extracts as a natural mild steel corrosion inhibitor in 1 M HCl solution, Arabian J. Chem., 9, 616–624.

[10] Frisch, A., Nielsen, A.B., Holder, A.J., 2001, GaussView User Manual, Gaussian, Inc., Pittsburgh.

[11] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta Jr., A.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, J., Tomasi, S.S., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., 2009, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford.

[12] Onwudiwe, D.C., Nthwane, Y.B., Ekennia, A.C., and Hosten, E., 2016, Synthesis, characterization and antimicrobial properties of some mixed ligand complexes of Zn(II) dithiocarbamate with different N-donor ligands, Inorg. Chim. Acta, 447, 134–141.

[13] Pavia, D.L., Lampman, G.M., Kriz, G.S., and Vyvyan, J.R., 2015, Introduction to Spectroscopy, 5th ed., Cengage Learning Asia, Singapore, 624.

[14] Abou-Hussein, A.A., and Linert, W., 2015, Synthesis, spectroscopic studies and inhibitory activity against bacteria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine schiff base ligand, Spectrochim. Acta, Part A, 141, 223–232.

[15] Mutalib, A.F.A., Baba, I., Farina, Y., and Samsudin, M.W., 2011, Synthesis and characterization of diphenyltin(IV) dithiocarbamate compounds, MJAS, 15 (1), 106–112.

[16] Reyes-Martínez, R., Mejia-Huicochea, R., Guerrero-Alvarez, J.A., Höpfl, H., and Tlahuext, H., 2008, Synthesis, heteronuclear NMR and X-ray crystallographic studies of two dinuclear diorganotin(IV) dithiocarbamate macrocycles, ARKIVOC, 5, 19–30.

[17] Ajibade, P.A., and Ejelonu, B.C., 2013, Group 12 dithocarbamate complexes: Synthesis, spectral studies and their use as precursors for metal sulfides nanoparticles and nano composites, Spectrochim. Acta, Part A, 113, 408–414.

[18] Tamilvanan, S., Gurumoorthy, G., Thirumaran, S., and Ciattini, S., 2017, Synthesis, characterization, cytotoxicity and antimicrobial studies on Bi(III) dithiocarbamate complexes containing furfuryl group and their use for the preparation of Bi2O3 nanoparticles, Polyhedron, 121, 70–79.

[19] Abdullah, N.H., Zainal, Z., Silong, S., Tahir, M.I.M., Tan, K.B., and Chang, S.K., 2016, Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex, Mater. Chem. Phys., 173, 33–41.

[20] Sivasekar, S., Ramalingam, K., Rizzoli, C., and Alexander, N., 2014, Synthesis, structural, continuous shape measure and bond valence sum characterization of bismuth(III) complexes of substituted dithiocarbamates and their solvothermal decomposition, Inorg. Chim. Acta, 419, 82–88.

[21] Khan, N., Farina, Y., Mun, L.K., Rajab, N.F., and Awang, N., 2014, Syntheses, spectral characterization, X-ray studies and in vitro cytotoxic activities of triorganotin(IV) derivatives of p-substituted N-methylbenzylaminedithiocarbamates, J. Mol. Struct., 1076, 403–410.

[22] Naqeebullah, Farina, Y., Chan, K.M., Mun, L.K., Rajab, N.F., and Ooi, T.C., 2013, Diorganotin(IV) derivatives of N-methyl p-fluorobenzo-hydroxamic acid: Preparation, spectral characterization, X-ray diffraction studies and antitumor activity, Molecules, 18 (4), 8696–8711.

[23] Kamaludin, N.F., and Awang, N., 2014, Synthesis and characterisation of organotin(IV) N-ethyl-N-phenyldithiocarbamate compounds and the crystal structures of dibutyl- and triphenyltin(IV) N-ethyl-N-phenyldithiocarbamate, Res. J. Chem. Environ., 18 (11), 99–107.

[24] Sonia, A.S., and Bhaskaran, R., 2017, Tris dithiocarbamate of Co(III) complexes: Synthesis, characterization, thermal decomposition studies and experimental and theoretical studies on their crystal structures, J. Mol. Struct., 1134, 416–425.

[25] Halimehjani, A.Z., Torabi, S., Amani, V., Notash, B., and Saidi, M.R., 2015, Synthesis and characterization of metal dithiocarbamate derivatives of [3-((pyridin-2-yl)methylamino)propanenitrile]: Crystal structure of [3-((pyridin-2-yl)methylamino) propanenitriledithio-carbamato] nickel(II), Polyhedron, 102 (2), 643–648.

[26] Zarrouk, A., Zarrok, H., Ramli, Y., Bouachrine, M., Hammouti, B., Sahibed-dine, A., and Bentiss, F., 2016, Inhibitive properties, adsorption and theoretical study of 3,7-dimethyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one as efficient corrosion inhibitor for carbon steel in hydrochloric acid solution, J. Mol. Liq., 222, 239–252.

[27] Olajire, A.A., 2017, Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors-a review, J. Mol. Liq., 248, 775–808.

[28] Samina, M., Karim, A., and Venkatachalam, A., 2011, Corrosion study of iron and copper metals and brass alloy in different medium, E-J. Chem., 8, 344–349.

[29] van der Hagen, M., and Järnberg, J., 2009, 140. Sulphuric, Hydrochloric, Nitric and Phosphoric Acids, The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals, vol. 43, Torén, K., eds., Sahlgrenska Academy, University of Göteborgs, Sweden, 81–96.

[30] Sidir, I., Sidir, Y.G., Kumalar, M., and Tasal, E., 2010, Ab initio Hartree–Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin molecule, J. Mol. Struct., 964 (1-3), 134–151.

[31] Luque, F.J., Lopez, J.M., and Orozco, M., 2000, Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”, Theor. Chem. Acc., 103, 343–345.

[32] Okulik, N., and Jubert, A.H., 2005, Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs, Internet electron. J. Mol. Des., 4 (1), 17–30.

[33] Parlak, C., Akgogan, M., Yildirim, G., Karagoz, N., Budak, E., and Terzioglu, C., 2011, Density functional theory study on the identification of 3-[(2-morpholinoethylimino) methyl]benzene-1,2-diol, Spectrochim. Acta, Part A, 79 (1), 263–271.



DOI: https://doi.org/10.22146/ijc.34703

Article Metrics

Abstract views : 1201 | views : 1139


Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.