Development of a Graphical User Interface Application to Identify Marginal and Potent Ligands for Estrogen Receptor Alpha

Nunung Yuniarti(1), Sudi Mungkasi(2), Sri Hartati Yuliani(3), Enade Perdana Istyastono(4*)

(1) Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Depok, Sleman, Yogyakarta 55281, Indonesia
(2) Department of Mathematics, Faculty of Science and Technology, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55282, Indonesia
(3) Faculty of Pharmacy, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55282, Indonesia
(4) Faculty of Pharmacy, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55282, Indonesia
(*) Corresponding Author


Employing ensemble Protein-Ligand Interaction Fingerprints (ensPLIF) as descriptors in post retrospective Structure-Based Virtual Screening (SBVS) campaigns Quantitative Structure-Activity Relationship (QSAR) analysis has been proven to significantly increase the predictive ability in the identification of potent ligands for estrogen receptor alpha (ERα). In the research presented in this article, similar approaches have been performed to construct and retrospectively validate an SBVS protocol to identify marginal ligands for ERα. Based on both validated SBVS protocols, a graphical-user-interface (GUI) application to identify if a compound is a non-, moderate or potent ligand for ERα was developed. The GUI application was subsequently used to virtually screen genistin, genistein, daidzin, and daidzein, followed by in vitro test employing a cytotoxic assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method.


Ensemble Protein-Ligand Interaction Fingerprints (ensPLIF); Structure-Based Virtual Screening (SBVS); estrogen receptor alpha (ERα); graphical-user-interface (GUI)

Full Text:

Full Text PDF


[1] Golbraikh, A., Muratov, E., Fourches, D., and Tropsha, A., 2014, Data set modelability by QSAR, J. Chem. Inf. Model., 54 (1), 1–4.

[2] Istyastono, E.P., 2015, Employing recursive partition and regression tree method to increase the quality of structure-based virtual screening in the estrogen receptor alpha ligands identification, Asian J. Pharm. Clin. Res., 8(6), 21–24.

[3] Istyastono, E.P., Yuniarti, N., Hariono, M., Yuliani, S.H., and Riswanto, F.D.O., 2017, Binary quantitative structure-activity relationship analysis in retrospective structure based virtual screening campaigns targeting estrogen receptor alpha, Asian J. Pharm. Clin. Res., 10 (12), 206–211.

[4] Istyastono, E.P., 2017, Binary quantitative structure-activity relationship analysis to increase the predictive ability of structure-based virtual screening campaigns targeting cyclooxygenase-2, Indones. J. Chem., 17 (2), 322–329.

[5] Istyastono, E.P., 2016, Optimizing structure-based virtual screening protocol to identify phytochemicals as cyclooxygenase-2 inhibitors, Indonesian J. Pharm., 27 (3), 163–173.

[6] Setiawati, A., Riswanto, F.D.O., Yuliani, S.H., and Istyastono, E.P., 2014, Retrospective validation of a structure-based virtual screening protocol to identify ligands for estrogen receptor alpha and its application to identify the alpha-mangostin binding pose, Indones. J. Chem., 14 (2), 103–108.

[7] Mysinger, M.M., Carchia, M., Irwin, J.J., and Shoichet, B.K., 2012, Directory of Useful Decoys, Enhanced (DUD-E): better ligands and decoys for better benchmarking, J. Med. Chem., 55 (14), 6582–6594.

[8] Cannon, E.O., Amini, A., Bender, A., Sternberg, M.J.E., Muggleton, S.H., Glen, R.C., and Mitchell, J.B.O., 2007, Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds, J. Comput.-Aided Mol. Des., 21 (5), 269–280.

[9] Riswanto, F.D.O., Hariono, M., Yuliani, S.H., and Istyastono, E.P., 2017, Computer-aided design of chalcone derivatives as lead compounds targeting acetylcholinesterase, Indonesian J. Pharm., 28 (2), 100–111.

[10] Anita, Y., Radifar, M., Kardono, L., Hanafi, M., and Istyastono, E.P., 2012, Structure-based design of eugenol analogs as potential estrogen receptor antagonists, Bioinformation, 8 (19), 901–906.

[11] Huang, N., Shoichet, B.K., and Irwin, J.J., 2006, Benchmarking sets for molecular docking, J. Med. Chem., 49 (23), 6789–6801.

[12] Marcou, G., and Rognan, D., 2007, Optimizing fragment and scaffold docking by use of molecular interaction fingerprints, J. Chem. Inf. Model., 47 (1), 195–207.

[13] Radifar, M., Yuniarti, N., and Istyastono, E.P., 2013, PyPLIF-assisted redocking indomethacin-(R)-alpha-ethyl-ethanolamide into cyclooxygenase-1, Indones. J. Chem., 13 (3), 283–286.

[14] Radifar, M., Yuniarti, N., and Istyastono, E.P., 2013, PyPLIF: Python-based Protein-Ligand Interaction Fingerprinting, Bioinformation, 9 (6), 325–328.

[15] Istyastono, E.P., Riswanto, F.D.O., and Yuliani, S.H., 2015, Computer-aided drug repurposing: a cyclooxygenase-2 inhibitor celecoxib as a ligand for estrogen receptor alpha, Indones. J. Chem., 15 (3), 274–280.

[16] Therneau, T., Atkinson, B., and Ripley, B., 2015, rpart: Recursive Partitioning and Regression Trees. R package version 4.1-9.

[17] Dixon, R.A., 2004, Phytoestrogens, Annu. Rev. Plant Biol., 55(1), 225–261.

[18] Istyastono, E.P., and Yuniarti, N., 2016, Construction of three dimensional structures of phytoestrogens converted from smiles string representations for simulations using PLANTS docking software, Trad. Med. J., 21 (2), 69–76.

[19] Yuliani, S.H., Istyastono, E.P., and Riswanto, F.D.O., 2016, The cytotoxic activity on T47D breast cancer cell of genistein-standardized ethanolic extract of tempeh - A fermented product of soybean (Glycine max), Orient. J. Chem., 32 (3), 1619–1624.

[20] O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R., 2011, Open Babel: An open chemical toolbox, J. Cheminform., 3 (1), 33–47.

[21] ten Brink, T., and Exner, T.E., 2009, Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results, J. Chem. Inf. Model., 49 (6), 1535–1546.

[22] Korb, O., Stützle, T., and Exner, T.E., 2007, An ant colony optimization approach to flexible protein–ligand docking, Swarm Intell., 1 (2), 115–134.

[23] Korb, O., Stützle, T., and Exner, T.E., 2009, Empirical scoring functions for advanced protein-ligand docking with PLANTS, J. Chem. Inf. Model., 49 (1), 84–96.

[24] Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., The R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., 2015, caret: Classification and Regression Training, R package version 6.0-52,

[25] R Core Team, 2016, R: a language and environment for statistical computing, Vienna,

[26] Kreidenweiss, A., Kremsner, P.G., and Mordmüller, B., 2008, Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon, Malar. J., 7 (187), 1–8.

[27] Lill, M.A., and Danielson, M.L., 2011, Computer-aided drug design platform using PyMOL, J. Comput.-Aided Mol. Des., 25 (1), 13–19.


Article Metrics

Abstract views : 3091 | views : 2787

Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.