One-Pot-Multicomponent Synthesis of 2,6-Diamino-4-arylpyridine-3,5-dicarbonitrile Derivatives Using Nanomagnetic Fe3O4@SiO2@ZnCl2

Behrooz Maleki(1*), Hadi Natheghi(2), Vahid Sokhanvaran(3), Samaneh Sedigh Ashrafi(4)
(1) Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar 96179-76487, Iran
(2) Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar 96179-76487, Iran
(3) Faculty of Basic Sciences, University of Neyshabur, Neyshabur, Iran
(4) Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar 96179-76487, Iran
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Gupta, A.K., and Curtis, A.S.G., 2004, Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture, J. Mater. Sci. - Mater. Med., 15 4), 493–496.
[2] Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., and von Rechenberg, B., 2005, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater., 293 (1), 483–496.
[3] Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J., 2003, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys., 36 (13), 167–181.
[4] Wang, D., He, J., Rosenzweig, N., and Rosenzweig, Z., 2004, Superparamagnetic Fe2O3 beads−CdSe/ZnS quantum dots core−shell nanocomposite particles for cell separation, Nano Lett., 4 (3), 409–413.
[5] Xu, C., Xu, K., Gu, H., Zheng, R., Liu, H., Zhang, X., Guo, Z., and Xu, B., 2004, Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles, J. Am. Chem. Soc., 126 (32), 9938–9939.
[6] Perez, J.M., Simeone, F.J., Saeki, Y., Josephson, L., and Weissleder, R., 2003, Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media, J. Am. Chem. Soc., 125 (34), 10192–10193.
[7] Graham, D.L., Ferreira, H.A., and Freitas, P.P., 2004, Magnetoresistive-based biosensors and biochips, Trends Biotechnol., 22 (9), 455–462.
[8] Hiergeist, R., Andra, W., Buske, N., Hergt, R., Hilger, I., Richter, U., and Kaiser, W., 1999, Application of magnetite ferrofluids for hyperthermia, J. Magn. Magn. Mater., 201 (1-3), 420–422.
[9] Jordan, A., Scholz, R., Wust, P., Fähling, H., and Felix, R., 1999, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, J. Magn. Magn. Mater., 201 (1-3), 413-419.
[10] Shokouhimehr, M., Piao, Y., Kim, J., Jang, Y., and Hyeon, T., 2007, A magnetically recyclable nanocomposite catalyst for olefin epoxidation, Angew. Chem. Int. Ed., 46 (37), 7039–7043.
[11] Tayebee, R., Amini, M.M., Abdollahi, N., Aliakbari, A., Rabiee, S., and Ramshini, H., 2013, Magnetic inorganic-organic hybrid nanomaterial for the catalytic preparation of bis(indolyl)arylmethanes under solvent-free conditions: preparation and characterization of H5PW10V2O40/pyridino-Fe3O4 nanoparticles, Appl. Catal., A, 468 (5), 75–87.
[12] Rahmayeni, R., Arief, S., Stiadi, Y., Rizal, R., and Zulhadjri, Z., 2012, Synthesis of magnetic nanoparticles of TiO2-NiFe2O4: Characterization and photocatalytic activity on degradation of rhodamine B, Indones. J. Chem., 12 (3), 229–234.
[13] Reddy, L.S., Reddy, T.R., Mohan, R.B., Mahesh, A., Lingappa, Y., and Reddy, N.C.G., 2013, An efficient green multi-component reaction strategy for the synthesis of highly functionalized pyridines and evaluation of their antibacterial activities, Chem. Pharm. Bull., 61 (11), 1114–1120.
[14] Kankala, S., Pagadala, R., Maddila, S., Vasam, C.S., and Jonnalagadda, S.B., 2015, Silver(I)–N-heterocyclic carbene catalyzed multicomponent reactions: A facile synthesis of multisubstituted pyridines, RSC Adv., 5 (127), 105446–105452.
[15] Khalili, D., 2016, Graphene oxide: A reusable and metal-free carbocatalyst for the one-pot synthesis of 2-amino-3-cyanopyridines in water, Tetrahedron Lett., 57 (15), 1721–1723.
[16] Katritzky, A.R., Rees, C.W., and Scriven, E.F.V., 1996, Comprehensive Heterocyclic Chemistry II, 2nd ed., Pergamon, Oxford, UK.
[17] Gribble, G.W., and Joule, J., 2009, Progress in Heterocyclic Chemistry, vol. 21, Elsevier Science, New York.
[18] Rao, A.V.R., Reddy, G.R., and Rao, B.V., 1991, Stereoselective synthesis of theonelladins A-D, J. Org. Chem., 56 (14), 4545–4547.
[19] Jayasinghe, L., Jayasooriya, C.P., Hara, N., and Fujimoto, Y., 2003, A pyridine ring-containing ecdysteroid from Diploclisia glaucescens, Tetrahedron Lett., 44 (49), 8769–8771.
[20] Kubota, T., Nishi, T., Fukushi, E., Kawabata, J., Fromont, J., and Kobayashi, J., 2007, Nakinadine A, a novel bis-pyridine alkaloid with a β-amino acid moiety from sponge Amphimedon sp, Tetrahedron Lett., 48 (29), 4983–4985.
[21] Brian, P.M., and Musau, P., 2016, Synthesis, reactivity and stability of aryl halide protecting groups towards di-substituted pyridines, Indones. J. Chem., 16 (1), 53–58.
[22] Quintela, J., Peinador, C., Botana, L., Estevez, M., and Riguera, R., 1997, Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]-pyrimidines, Bioorg. Med. Chem., 5 (8), 1543–1553.
[23] Kanbara, T., Kushida, T., Saito, N., Kuwajima, I., Kubota, K., and Yamamoto, T., 1992, Preparation, and properties of highly electron-accepting poly(pyrimidine-2,5-diyl), Chem. Lett., 21 (4), 583–586.
[24] Wang, H., Helgeson, R., Ma, B., and Wudl, F., 2000, Synthesis and optical properties of cross-conjugated bis(dimethylaminophenyl)pyridylvinylene derivatives, J. Org. Chem., 65 (18), 5862–5867.
[25] Petrov, V.F., Pavluchenko, A.I., and Smirnova, N.I., 1995, New liquid crystalline pyridine derivatives, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 265 (1), 47–53.
[26] Meyer, T.J., 1989, Chemical approaches to artificial photosynthesis, Acc. Chem. Res., 22 (5), 163–170.
[27] Cocco, M.T., Congiu, C., Lilliu, V., and Onnis, V., 2007, Synthesis and in vitro antitumoral activity of new 3,5-dicyanopyridine derivatives, Bioorg. Med. Chem., 15 (4), 1859–1867.
[28] Cocco, M.T., Congiu, C., Lilliu, V., and Onnis, V., 2005, Synthesis and antiproliferative activity of 2, 6-dibenzylamino-3, 5-dicyanopyridines on human cancer cell lines, Eur. J. Med. Chem., 40 (12), 1365–1372.
[29] Zhou, D., Lee, H., Rothfuss, J.M., Chen, D.L., Ponde, D.E., Welch, M.J., and Mach, R.H., 2009, Design and synthesis of 2-amino-4-methylpyridine analogues as inhibitors for inducible nitric oxide synthase and in vivo evaluation of [18F]6-(2-fluoropropyl)-4-methyl-pyridin-2-amine as a potential PET Tracer for Inducible nitric oxide synthase, J. Med. Chem., 52 (8), 2443–2453.
[30] Scott, N.M., Schareina, T., Tok, O., and Kempe, R., 2004, Lithium and potassium amides of sterically demanding aminopyridines, Eur. J. Inorg. Chem., 2004 (16), 3297–3304.
[31] Sarkar, S., Das, D.K., and Khan, A.T., 2014, Synthesis of fully-substituted pyridines and dihydropyridines in a highly chemoselective manner utilizing a multicomponent reaction (MCR) strategy, RSC Adv., 4 (96), 53752–53760.
[32] Raghukumar, V., Thirumalai, D., Ramakrishnan, V.T., Karunakara, V., and Ramamurthy, P., 2003, Synthesis of nicotinonitrile derivatives as a new class of NLO materials, Tetrahedron, 59 (21), 3761–3768.
[33] Huang, J., Zhou, J., Song, S., Song, H., Chen, Z., and Yi, W., 2015, A new and efficient ZnCl2-catalyzed synthesis and biological evaluation of novel 2-amino-3,5-dicyano-4-aryl-6-aryl-aminopyridines as potent antibacterial agents against Helicobacter pylori (HP), Tetrahedron, 71 (45), 8628–8636.
[34] Yang, J., Li, J., Hao, P., Qiu, F., Liu, M., Zhang, Q., and Shi, D., 2015, Synthesis, optical properties of multi donor-acceptor substituted AIE pyridine derivatives dyes and application for Au3+ detection in aqueous solution, Dyes Pigm., 116, 97–105.
[35] Mobinikhaledi, A., Asadbegi, S., and Bodaghifard, M.A., 2016, Convenient, multicomponent, one-pot synthesis of highly substituted pyridines under solvent-free conditions, Synth. Commun., 46 (19), 1605-1611.
[36] Murray, T.J., Zimmerman, S.C., and Kolotuchin, S.V., 1995, Synthesis of heterocyclic compounds containing three contiguous hydrogen bonding sites in all possible arrangements, Tetrahedron, 51 (2), 635–648.
[37] Samadi, A., Silva, D., Chioua, M., Carreiras, M.C., and Marco-Contelles, J., 2011, Microwave irradiation–assisted amination of 2-chloropyridine derivatives with amide solvents, Synth. Commun., 41 (19), 2859–2869.
[38] Harada, H., Watanuki, S., Takuwa, T., Kawaguchi, K., Okazaki, T., Hirano, Y., and Saitoh, C., 2003, Medicine comprising dicyanopyridine derivative, US20030232860A1.
[39] Mashaly, M.M., and Hammoudab, M., 1999, New simple and one-pot synthetic routes to polyfunctionally substituted pyridines; 1,4-dihydropyridazines and 4H-1,2-oxazine, Z. Naturforsch., B: Chem. Sci., 54 (9), 1205–1209.
[40] Maleki, B., Rezaei-Seresht, E., and Ebrahimi, Z., 2015, Friedlander synthesis of quinolines promoted by polymer-bound sulfonic acid, Org. Prep. Proced. Int., 47 (2), 149–160.
[41] Maleki, B., 2015, Solvent-free synthesis of 2,4,6-triarylpyridine derivatives promoted by 1,3-dibromo-5,5-dimethylhydantoin, Org. Prep. Proced. Int., 47 (2), 173–178.
[42] Maleki, B., Zonoz, F.M., and Akhlaghi, H.A., 2015, An efficient synthesis of symmetrical N,N′-alkylidene bis-amides catalyzed by a heteropolyacid, Org. Prep. Proced. Int., 47 (5), 361–367.
[43] Maleki, B., Kahoo, G.E., and Tayebee, R., 2015, One-pot synthesis of polysubstituted imidazoles catalyzed by an ionic liquid, Org. Prep. Proced. Int., 47 (6), 461–472.
[44] Maleki, B., Raei, M., Alinezhad, H., Tayebee, R., and Sedrpoushan, A., 2018, Chemoselective synthesis of tetraketones in water catalyzed by nanostructured diphosphate Na2CaP2O7, Org. Prep. Proced. Int., 50 (3), 288–300.
[45] Ren, Y.M., Shao, J.J., Wu, Z.C., and Xu, M.D., 2014, PEG1000-Based dicationic acidic ionic liquid catalyzed one-pot synthesis of 1,4-dihydropyridines via the Hantzsch reaction, Org. Prep. Proced. Int., 46 (6), 545–550.
[46] Mastitski, A., and Järv, J., 2014, One-pot synthesis of Fmoc-and Boc-protected aza-methionine precursors from 2-methylthioacetaldehyde dimethyl acetal, Org. Prep. Proced. Int., 46 (6), 559–564.
[47] Wang, M., Song, J.L., Zhao, S., and Wan, X., 2014, Synthesis of 3,4-dihydropyrimidin-2(1H)-ones using sodium bisulfate as a catalyst under solvent-free conditions, Org. Prep. Proced. Int., 46 (5), 457–462.
[48] Mobinikhaledi, A., Bodaghifard, M.A., and Asadbegi, S., 2016, A novel four- and pseudo-five-component reaction: Unexpected efficient one-pot synthesis of 4H-thiopyran derivatives, Mol. Diversity, 20 (2), 461–468.
[49] Maleki, B., Rooky, R., Rezaei-Seresht, E., and Tayebee, R., 2017, One-pot synthesis of bicyclic ortho-aminocarbonitrile and multisubstituted cyclohexa-1,3-dienamine derivatives, Org. Prep. Proced. Int., 49 (6), 557–567.
[50] Maleki, B., and Mofrad, A.V., 2017, Efficient synthesis of quinazoline derivatives catalyzed by flourinated alcohol, Res. Chem. Intermed., 43 (5), 3111–3120.
[51] Maleki, B., Eshghi, H., Barghamadi, M., Nasiri, N., Khojastehnezhad, A., Sedigh Ashrafi, S., and Pourshiani, O., 2016, Silica-coated magnetic NiFe2O4 nanoparticles-supported H3PW12O40; synthesis, preparation, and application as an efficient, magnetic, green catalyst for one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives, Res. Chem. Intermed., 42 (4), 3071–3093.
[52] Maleki, B., Baghayeri, M., Sheikh, S., Babaee, S., and Farhadi, S.,2017, One-pot synthesis of some 2-amino-4H-chromene derivatives using triethanolamine as a novel reusable organocatalyst under solvent-free conditions and its application in electrosynthesis of silver nanoparticles, Russ. J. Gen. Chem., 87 (87), 1064-1072.
[53] Veisi, H., Naeimi, A.R., Maleki, B., Sedigh Ashrafi, S., and Sedrpoushan, A.R., 2015, Synthesis of 5-alkylidene-2, 4-thiazolidinediones and rhodanines promoted by propylamino-functionalized nano-structured SBA-15, Org. Prep. Proced. Int., 47 (4), 309–315.
[54] Maleki, B., 2016, One-Pot Synthesis of some 2-amino-4H-benzo[g]chromenes, Org. Prep. Proced. Int., 48 (1), 81–87.
[55] Maleki, B., 2016, Green synthesis of bis-Coumarin and dihydropyrano[3,2-c]chromene derivatives catalyzed by o-benzenedisulfonimide, Org. Prep. Proced. Int., 48 (3), 303–318.
[56] Maleki, B., Akbarzadeh, E., and Babaee, S., 2015, New basic ionic liquid from ethan-1,2-diyl bis (hydrogen sulfate) and DBU (1,8-diazobicyclo[5.4.0]undec-7-ene) as an efficient catalyst for one-pot synthesis of xanthene derivatives, Dyes. Pigm., 123, 222–234.
[57] Soleimani, E., Namivandi, M.N., and Sepahvand, H., 2017, ZnCl2 supported on Fe3O4@SiO2 core–shell nanocatalyst for the synthesis of quinolines via Friedländer synthesis under solvent‐free condition, Appl. Organomet. Chem., 31 (2), 3566–3574.

Article Metrics


Copyright (c) 2018 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.