Grafting of Heparin on Blend Membrane of Citric Acid Crosslinked Chitosan/Polyethylene Glycol-Poly Vinyl Alcohol (PVA-PEG)

https://doi.org/10.22146/ijc.30861

Retno Ariadi Lusiana(1*), Ginanjar Argo Pambudi(2), Fitra Nilla Sari(3), Didik Setiyo Widodo(4), Khabibi Khabibi(5), Sri Isdadiyanto(6)

(1) Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(2) Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(3) Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(4) Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(5) Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(6) Department of Biology, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(*) Corresponding Author

Abstract


Heparin, an active sulfate group material, grafted onto blend membrane citric acid cross-linked chitosan/poly (vinyl alcohol)-poly(ethylene glycol) (PVA-PEG) to improve the membrane properties. The physical tests shown that grafting reaction of citric acid crosslinked chitosan increased the mechanical strength and membrane swelling. The permeability test results, it was found that the grafted chitosan membrane was improved permeability of both urea and creatinine as compared to chitosan pure and chitosan crosslinked membrane. The negative charge of the sulphonate group of heparin increased the number of the active side of the carrier in the membrane, which then correlated to the membrane’s permeability process.

Keywords


polymer; grafting; heparin; membrane; permeability

Full Text:

Full Text PDF


References

[1] Mitra, T., Sailakshmi, G., Gnanamani, A., and Mandal, A.B., 2013, Studies of crosslinking of succininc acid with chitosan/collagen, Mater. Res., 16 (4), 755–765.

[2] Lusiana, R.A., Siswanta, D., and Mudasir, 2016, Preparation of citric acid crosslinked chitosan/poly(vinyl alcohol) blend membranes for creatinine transport, Indones. J. Chem., 16 (2), 144–150.

[3] Wang, Y.X., Robertson J.L., Spillman W.B., and Claus, R.O., 2004, Effect of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility, Pharm. Res., 21 (8), 1362–1373.

[4] Anitha, A., Rejinol, S., Bumgardner, J.D., Nair, S.V., and Jayakumar, R., 2012, “Approaches for functional Modification or Cross-linking of Chitosan” in Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, Sarmento, B., and das Neves, J., Eds., 1st ed., John Wiley & Sons, Ltd., 108–124.

[5] Rutnakornpituk, M., Ngamdee P., and Phinyocheep, P., 2006, Preparation and properties of polydimethylsiloxane-modified chitosan, Carbohydr. Polym., 63 (2), 229–237.

[6] Costa-Júnior, E.S., Barbosa-Stancioli, E.F., Mansur, A.A.P., Vasconcelos, W.L., and Mansur, H.S., 2009, Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications, Carbohydr. Polym., 76 (3), 472–481.

[7] Ran, F., Nie, S., Zhao, W., Li, J., Su, B., Sun, S., and Zhao, C., 2011, Biocompatibility of modified polyethersulfone membranes by blending amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly(vinyl pyrrolidone), Acta Biomater., 7 (9), 3370–3381.

[8] Badr, I.H.A., Gouda, M., Abdel-Sattar, R., and Sayour, H.E.M., 2014, Reduction of thrombogenicity of PVC-based sodium selective membrane electrodes using heparin-modified chitosan, Carbohydr. Polym., 99, 783–790.

[9] Silitonga, R.S., Widiastuti, N., Jaafar, J., Ismail, A.F., Abidin, M.N.Z., Azelee, E.W., and Naidu, M., 2018, The modification of PVDF membrane via crosslinking with chitosan and glutaraldehyde as the crosslinking agent, Indones. J. Chem., 18 (1), 1–6.

[10] Fahmy, H.M., and Fouda, M.M.G., 2008, Crosslinking of alginic acid/chitosan matrices using polycarboxylic acids and their utilization for sodium diclofenac release, Carbohydr. Polym., 73 (4), 606–611.

[11] Amiji, M.M., 1995, Permeability and blood compatibility properties of chitosan-poly(ethylene oxide) blend membranes for haemodialysis, Biomaterials, 16 (8), 593–599.

[12] Ming-Chien, Y., and Ting-Yu, L., 2003, The permeation of polyacrylonitrile/polyvinylidine fluoride blend membranes, J. Membr. Sci., 226 (1-2), 119–130.

[13] Abdel-Mohsen, A.M., Aly, A.S., Hrdina, R., Montaser, A.S., and Hebeish, A., 2011, Eco-synthesis of PVA/chitosan hydrogels for biomedical application, J. Polym. Environ., 19 (4), 1005–1012.

[14] Roy, A. and Vikram, K., 2012, Anticoagulation In Haemodialysis, JIMSA, 25, 107-109

[15] Ma, L., Baihai, S., Chong, C., Yin, Z., Qin, H., Zhao, J., Sun, S., and Zhao, C., 2014, Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo, J. Membr. Sci., 470, 90–101.

[16] Li, L., Cheng, C., Xiang, T., Tang, M., Zhao, W., Sun, S., and Zhao, C., 2012, Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity, J. Membr. Sci., 405-406, 261–274.

[17] Zhu, A.P., Ming, Z., and Jian, S., 2005, Blood compatibility of chitosan/heparin complex surface modified ePTFE vascular graft, Appl. Surf. Sci., 241 (3-4), 485–492.

[18] Radhakumary, C., Nair, P.D., Nair, C.P.R., and Mathew, S., 2012, Chitosan-graft-poly(vinyl acetate) for hemodialysis application, J. Appl. Polym. Sci., 125 (3), 2022–2033.

[19] Bagheri, M., Younesi, H., Hajati, S., and Borghei, S.M., 2015, Application of chitosan-citric acid nanoparticles for removing chromium(VI), Int. J. Biol. Macromol., 80, 431–444.

[20] Izák, P., Hovorka, S., Bartovský, T., Bartovská, L., and Crespo, J.G., 2007, Swelling of polymeric membranes in room temperature ionic liquids, J. Membr. Sci., 296 (1-2), 131–138.

[21] Peppas, N.A., and Reinhart, C.T., 1983, Solute diffusion in swollen membranes. Part I. A new theory, J. Membr. Sci., 15 (1983) 275-287.



DOI: https://doi.org/10.22146/ijc.30861

Article Metrics

Abstract views : 4428 | views : 3382


Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.