Synthesis and Characterization of Lignin-Based Polyurethane as a Potential Compatibilizer
Salma Ilmiati(1*), Jana Hafiza(2), Jaka Fajar Fatriansyah(3), Elvi Kustiyah(4), Mochamad Chalid(5)
(1) Department of Metallurgy and Materials Engineering, Universitas Indonesia, Depok 16424, Indonesia
(2) Department of Metallurgy and Materials Engineering, Universitas Indonesia, Depok 16424, Indonesia
(3) Department of Metallurgy and Materials Engineering, Universitas Indonesia, Depok 16424, Indonesia
(4) Department of Chemical Engineering, Universitas Bhayangkara Jakarta Raya, Jl. Raya Perjuangan, Bekasi Utara 17121, West Java, Indonesia
(5) Department of Metallurgy and Materials Engineering, Universitas Indonesia, Depok 16424, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Meredith, J.C., and Amis, E.J., 2000, LCST phase separation in biodegradable polymer blends: Poly(D,L-lactide) and poly(ε-caprolactone), Macromol. Chem. Phys., 201 (6), 733–739.
[2] Tuba, F., Oláh, L., and Nagya, P., 2011, Characterization of reactively compatibilized poly (D,L-lactide)/poly(ε-caprolactone) biodegradable blends by essential work of fracture method, Eng. Fract. Mech., 78 (17), 3123–3133.
[3] Ray, S.S., Bandyopadhyay, J., and Bousmina, M., 2007, Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite, Polym. Degrad. Stab., 92 (5), 802–812.
[4] Burns, K.L., Oldham, C.D., and May, S.W., 2009, Bacterial production of poly(3-hydroxybutyrate): An undergraduate student laboratory experiment, J. Chem. Edu., 86 (5), 603–605.
[5] Liu, Q.S., Zhu, M.F., Wu, W.H., and Qin, Z.Y., 2009, Reducing the formation of Six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability, Polym. Degrad. Stab., 94 (1), 18–24.
[6] Rozman, H.D., Tan K.W., Kumar, R.N., Abubakar, A., Ishak Z.A.M., and Ismail, H., 2000, The effect of lignin as a compatibilizer on the physical properties of coconut fiber–polypropylene composites, Eur. Polym. J., 37 (7), 1483–1494.
[7] Kun, D., and Pukánszky, B., 2017, Polymer/lignin blends: Interactions, properties, applications, Eur. Polym. J., 93, 618–641.
[8] Park, Y.T., Qian, Y., Lindsay, C.I., Nijs, C., Camargo, R.E., Stein, A., and Macosko, C.W., 2013, Polyol-assisted vermiculite dispersion in polyurethane nanocomposites, ACS Appl. Mater. Interfaces, 5 (8), 3054–3062.
[9] Zhang, C., Madbouly, S.A., and Kessler, M.R., 2015, Biobased polyurethanes prepared from different vegetable oils, ACS Appl. Mater. Interfaces, 7 (2), 1226–1233.
[10] Li, W., Ryan, A.J., and Meier, I.K., 2002, Morphology development via reaction-induced phase separation in flexible polyurethane foam, Macromolecules, 35 (13), 5034–5042.
[11] Zhuohong, Y., Jinlian, H., Yeqiu, L., and Lapyan, Y., 2006, The study of crosslinked shape memory polyurethanes, Mater. Chem. Phys., 98 (2-3), 368–372.
[12] Hu, J., Yang, Z., Yeung, L., Ji, F., and Liu, Y., 2005, Crosslinked polyurethanes with shape memory properties, Polym. Int., 54 (5), 854–859.
[13] Chung, Y.C., Cho, T.K., and Chun, B.C., 2009, Flexible cross-linking by both pentaerythritol and polyethyleneglycol spacer and its impact on the mechanical properties and the shape memory effects of polyurethane, J. Appl. Polym. Sci., 112 (5), 2800–2808.
[14] Izunobi, J.U., and Higginbotham, C.L., 2011, Polymer molecular weight analysis by 1H NMR spectroscopy, J. Chem. Educ., 88 (8), 1098–1104.
[15] Lamour, G., Hamraoui, A., Buvailo, A., Xing, K., Keuleyan, S., Prakash, V., Eftekhari-Bafrooei, A., and Borguet, E., 2010, Contact angle measurements using a simplified experimental setup, J. Chem. Educ., 87 (12), 1403–1407.
[16] Skoog, D.A., and Leary, J.J., 1992, Principles of Instrumental Analysis, 4th Ed., Saunders College Publishing, Forth Worth, 801.
[17] Chalid, M., Heeres, H.J., and Broekhuis, A.A., 2012, Study of synthesis of novel ɤ-valerolactone-based polyurethanes, Appl. Mech. Mater., 229-231, 297–302.
[18] Chalid, M., 2011, Synthesis and characterization of novel polyurethanes based on N,N'-1,2-ethanediylbis-(4-hydroxy-pentanamide) and 4-hydroxy-N-(2-hydroxyethyl)-pentanamide, Adv. Mater. Res., 277, 112–119.
[19] Chalid, M, Heeres, H.J., and Broekhuis, A.A., 2013, A study on the structure of novel polyurethanes derived from γ-valerolactone-based diol precursors, Adv. Mater. Res., 789, 274–278.
[20] Chalid, M., Heeres, H.J., and Broekhuis, A.A., 2015, Structure-mechanical and thermal properties relationship of novel γ-valerolactone-based polyurethanes, Polym. Plast. Technol. Eng., 54 (3), 234–245.
[21] Tersac, M., 2007, Chemistry and technology of polyols for polyurethanes, Polym. Int., 56 (6), 820.
[22] Xue, B.L., Wen, J.L., Zhu, M.Q., and Sun, R.C., 2014, Lignin-based polyurethane film reinforced with cellulose nanocrystals, RSC Adv., 4, 36089–36096.
[23] Kumari, S., Chauhan, G.S., Monga, S., Kaushik, A., and Ahn, J.H., 2016, New lignin-based polyurethane foam for wastewater treatment, RSC Adv., 6 (81), 77768–77776.
DOI: https://doi.org/10.22146/ijc.27176
Article Metrics
Abstract views : 4880 | views : 4437Copyright (c) 2018 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.