QMCF-MD Simulation and NBO Analysis of K(I) Ion in Liquid Ammonia


Yuniawan Hidayat(1*), Ria Armunanto(2), Harno Dwi Pranowo(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta 5712612, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author


Ab initio of Quantum Mechanics Charge Field Molecular Dynamic (QMCF-MD) of K(I) ion in liquid ammonia has been studied. A Hartree-Fock level of theory was coupled with LANL2DZ ECP basis set for K(I) ion and DZP (Dunning) for ammonia. Two regions as first and second solvation shell were observed. In the first solvation shell at distance 3.7 (Å), K(I) ion was coordinated by four to eight ammonia molecules dominated by K(NH3)6+ species. Second shell of solvation was ranging between 3.7 Å to 7.3 Å. Within simulation time of 20 ps, the frequent exchange processes of ligands indicating for a very labile solvation structure. Four mechanism types of ligand exchange between first and second solvation shell were observed. Mean residence time of ligand is less than 2 ps confirming weak in ion-ligand interaction. Evaluation of K(NH3)6+ using natural bond orbital analysis shows that the Wiberg bond Index is less than 0.05 indicating weak electrostatic interaction of K-N.


potassium; ammonia; simulation; ligand exchange; QMCF; NBO

Full Text:

Full Text PDF


[1] Cieplak, P., and Kollman, P., 1990, Monte Carlo simulation of aqueous solutions of Li+ and Na+ using many body potentials, J. Chem. Phys., 92 (11), 6761.

[2] Tongraar, A., Liedl, K.R., and Rode, B.M., 1998, Born−Oppenheimer ab Initio QM/MM dynamics simulations of Na+ and K+ in water: From structure making to structure breaking effects, J. Phys. Chem. A., 102 (50), 10340–10347.

[3] Orabi, E.A., and Lamoureux, G., 2013, Molecular dynamics investigation of alkali metal ions in liquid and aqueous ammonia, J. Chem. Theory Comput., 9 (5), 2324–2338.

[4] Zhang, Y., and Lin, H., 2008, Flexible-boundary quantum-mechanical/molecular-mechanical calcu-lations: Partial charge transfer between the quantum-mechanical and molecular-mechanical subsystems, J. Chem. Theory Comput., 4 (3), 414–425.

[5] Tongraar, A., Hannongbua, S., and Rode, B.M., 1997, Molecular dynamics simulations of a potassium ion and an iodide ion in liquid ammonia, Chem. Phys., 219 (2-3), 279–290.

[6] Wasse, J.C., Hayama, S., Skipper, N.T., Benmore, C.J., and Soper, A.K., 2000, The structure of saturated lithium- and potassium-ammonia solutions as studied by using neutron diffraction, J. Chem. Phys., 112 (16), 7147–7151.

[7] Rode, B.M., Hofer, T.S., Randolf, B.R., Schwenk, C.F., Xenides, D., and Vchirawongkwin, V., 2006, Ab initio quantum mechanical charge field (QMCF) molecular dynamics: a QM/MM–MD procedure for accurate simulations of ions and complexes, Theor. Chem. Acc., 115 (2-3), 77–85.

[8] Suwardi, Pranowo, H.D., and Armunanto, R., 2015, Investigation of structural and dynamical properties of hafnium(IV) ion in liquid ammonia: An ab initio QM/MM molecular dynamics simulation, Chem. Phys. Lett., 636, 167–171.

[9] Hinteregger, E., Pribil, A.B., Hofer, T.S., Randolf, B.R., Weiss, A.K.H., and Rode, B.M., 2010, Structure and dynamics of the chromate ion in aqueous solution. An ab Initio QMCF-MD simulation, Inorg. Chem., 49 (17), 7964–7968.

[10] Azam, S.S., Hofer, T.S., Bhattacharjee, A., Lim, L.H.V., Pribil, A.B., Randolf, B.R., and Rode, B.M., 2009, Beryllium(II): The strongest structure-forming ion in water? A QMCF MD simulation study, J. Phys. Chem. B, 113 (27), 9289–9295.

[11] Vchirawongkwin, V., Rode, B.M., and Persson, I., 2007, Structure and dynamics of sulfate ion in aqueous solution an ab initio QMCF MD simulation and large angle X-ray scattering study, J. Phys. Chem. B, 111 (16), 4150–4155.

[12] Iswanto, P., Armunanto, R., and Pranowo, H.D., 2010, Structure of Iridium(Ill) hydration based on ab initio quantum mechanical charge field molecular dynamics simulations, Indones. J. Chem.,10 (3), 352–356.

[13] Prasetyo, N., Canaval, L.R., Wijaya, K., and Armunanto, R., 2015, Lithium(I) in liquid ammonia: A quantum mechanical charge field (QMCF) molecular dynamics simulation study, Chem. Phys. Lett., 619, 158–162.

[14] Matović, Z.D., Jeremić, M.S., Jelić, R.M., Zlatar, M., and Jakovljević, I.Ž., 2013, Configurational, LFDFT and NBO analysis of chromium(III) complexes of edta-type ligands, Polyhedron, 55, 131–143.

[15] Glendening, E.D., Landis, C.R., and Weinhold, F., 2012, Natural bond orbital methods, WIREs Comput. Mol. Sci., 2 (1), 1–42.

[16] Weinhold, F., 2012, Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives, J. Comput. Chem., 33 (30), 2363–2379.

[17] Otero-Calvi, A., Aullon, G., Alvarez, S., Montero, L.A., and Stohrer, W.D., 2006, Bonding and solvation preferences of nickel complexes [Ni(S2 PR 2)2] (R=H, Me, OMe) according a natural bond orbital analysis, J. Mol. Struct. THEOCHEM, 767 (1-3), 37–41.

[18] Shakourian-Fard, M., Kamath, G., and Sankaranarayanan, S.K.R.S., 2015, Electronic structure insights into the solvation of magnesium ions with cyclic and acyclic carbonates, ChemPhysChem, 16 (17), 3607–3617.

[19] Yang, Y., and Cui, Q., 2007, Interactions between phosphate and water in solution: A natural bond orbital based analysis in a QM/MM framework, J. Phys. Chem. B, 111 (16), 3999–4002.

[20] Diendere, F., Guiguemde, I., and Bary, A., 2014, Natural bond orbital analysis of the bonding in complexes of Li with ammonia, Res. J. Chem. Sci., 4 (1), 20–25.

[21] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., 2016, Gaussian 09: Revision A.02, Gaussian, Inc., Wallingford CT.

[22] Ahlrichs, R., Armbruster, M.K., Bär, M., Baron, H.P., Bauernschmitt, R., Crawford, N., Deglmann, P., Ehrig, M., Eichkorn, K., Elliott, S., Furche, F., Haase, F., Häser, M., Hättig, C., Hellweg, A., Horn, H., Huber, C., Huniar, U., Kattannek, M., Kölmel, C., Kollwitz, M., May, K., Nava, P., Ochsenfeld, C., Öhm, H., Patzelt, H., Rappoport, D., Rubner, O., Schäfer, A., Schneider, U., Sierka, M., Treutler, O., Unterreiner, B., von Arnim, M., Weigend, F., Weis, P., and Weiss, H., 2008, TURBOMOLE v.5.9, University of Karlsruhe and Forschungszentrum, Karlsruhe.

[23] Hofer, T.S., Pribil, A.B., Randolf, B.R., and Bhatthacharjee, A., 2009, The QMCFC package 1.3, University of Insbruck, Insbruck.

[24] Humphrey, W., Dalke, A. and Schulten, K., 1996, VMD: Visual molecular dynamics, J. Mol. Graphics, 14 (1), 33–38.

[25] Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T., and Hirao, K., 2004, A long-range-corrected time-dependent density functional theory, J. Chem. Phys., 120 (18), 8425–8433.

[26] Williams, H.L., and Chabalowski, C.F., 2001, Using Kohn−Sham orbitals in symmetry-adapted perturbation theory to investigate intermolecular interactions, J. Phys. Chem. A, 105 (3), 646–659.

[27] Azam, S.S., Hofer, T.S., Randolf, B.R., and Rode, B.M., 2009, Hydration of Sodium(I) and Potassium(I) revisited: A comparative QM/MM and QMCF MD simulation study of weakly hydrated ions, J. Phys. Chem., 113 (9), 1827–1834.

[28] Hofer, T.S., Tran, H.T., Schwenk, C.F., and Rode, B.M., 2004, Characterization of dynamics and reactivities of solvated ions by ab initio simulations, J. Comput. Chem., 25 (2), 211–217.

[29] Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R., 1984, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81 (8), 3684–3690.

[30] Qian, X.W., Stump, D.R., and Solin, S.A., 1986, Structural properties of potassium-ammonia liquids in graphite, Phys. Rev. B: Condens. Matter, 33 (8), 5756–5769.

[31] Kabbalee, P., Sripa, P., Tongraar, A., and Kerdcharoen, T., 2015, Solvation structure and dynamics of K+ in aqueous ammonia solution: Insights from an ONIOM-XS MD simulation, Chem. Phys. Lett., 633 (16), 152–157.

DOI: https://doi.org/10.22146/ijc.26788

Article Metrics

Abstract views : 2621 | views : 2794

Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.