Influence of Macrocyclic Ring Size on the Corrosion Inhibition Efficiency of Dibenzo Crown Ether: A Density Functional Study

https://doi.org/10.22146/ijc.26667

Saprizal Hadisaputra(1*), Saprini Hamdiani(2), Muhammad Arsyik Kurniawan(3), Nuryono Nuryono(4)

(1) Department of Chemistry Education, Faculty of Science and Education, University of Mataram, Jalan Majapahit No 62, Mataram, 83125, Indonesia
(2) Department of Chemistry Education, Faculty of Science and Education, University of Mataram, Jalan Majapahit No 62, Mataram, 83125, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Islam Indonesia. Jalan Kaliurang KM 14,5 Yogyakarta 55584
(4) Department of Chemistry, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


The effect of macrocycle ring size on the corrosion inhibition efficiency of dibenzo-12-crown-4 (DB12C4), dibenzo-15-crown-5 (DB15C5), dibenzo-18-crown-6 (DB18C6), dibenzo-21-crown-7 (DB21C7) and dibenzo-24-crown-8 (DB24C8) have been elucidated by mean of density functional calculation at B3LYP/6-31G(d) level of theory in the gas and aqueous environment. The quantum chemical parameters including the frontier orbital energies (EHOMO, ELUMO), ionization potential (I), electron affinity (A), the absolute electronegativity (χ), hardness (η), softness (σ), and the fraction of electron transferred (ΔN) are positively correlated to the corrosion inhibition efficiency (IE%) of the studied crown ethers. The calculation results indicate that DB24C8 exhibits the highest corrosion inhibition efficiency, whereas DB12C4 exhibits the lowest corrosion inhibition efficiency. The results of this study will contribute to design crown ethers potential as corrosion inhibitors.

Keywords


crown ether; corrosion inhibition; ring size; DFT method

Full Text:

Full Text PDF


References

[1] Uhlig, H.H., and Revie, R.W., 1985, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, John Wiley & Sons, inc., America, 1–7.

[2] Qiang, Y., Zhang, S., Guo, L., Xu, S., Feng, L., Obot, I.B., and Chen, S., 2017, Sodium dodecyl benzene sulfonate as a sustainable inhibitor for zinc corrosion in 26% NH4Cl solution, J. Cleaner Prod., 152, 17–25.

[3] Mobin, M., and Rizvi, M., 2017, Polysaccharide from Plantago as a green corrosion inhibitor for carbon steel in 1 M HCl solution, Carbohydr. Polym., 160, 172–183.

[4] Douadi, T., Hamani, H., Daoud, D., Al-Noaimi, M., and Chafaa, S., 2017, Effect of temperature and hydrodynamic conditions on corrosion inhibition of an azomethine compounds for mild steel in 1 M HCl solution, J. Taiwan Inst. Chem. Eng., 71, 388–404.

[5] Zarrouk, A., Hammouti, B., Lakhlifi, T., Traisnel, M., Vezin, H., and Bentiss, F., 2015, New 1H-pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: Electrochemical, XPS and DFT studies, Corros. Sci., 90, 572–584.

[6] Yıldız, R., Döner, A., Doğan, T., and Dehri, İ., 2014, Experimental studies of 2-pyridinecarbonitrile as corrosion inhibitor for mild steel in hydrochloric acid solution, Corros. Sci., 82, 125–132.

[7] Mendonça, G.L.F., Costa, S.N., Freire, V.N., Casciano, P.N.S., Correia, A.N., and Lima-Neto, P.D., 2017, Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods, Corros. Sci., 115, 41–55.

[8] Noor, E.A., 2005, The inhibition of mild steel corrosion in phosphoric acid solutions by some N-heterocyclic compounds in the salt form, Corros. Sci., 47 (1), 33–55.

[9] Purwoko, A.A., and Hadisaputra, S., 2017, Experimental and theoretical study of the substituted (H6-arene)Cr(CO)3 complexes, Orient. J. Chem., 33 (2), 717–724.

[10] Shetty, S.K., and Shetty, A.N., 2017, Eco-friendly benzimidazolium based ionic liquid as a corrosion inhibitor for aluminum alloy composite in acidic media, J. Mol. Liq., 225, 426–438.

[11] Benabid, S., Douadi, T., Issaadi, S., Penverne, C., and Chafaa, S., 2017, Electrochemical and DFT studies of a new synthesized Schiff base as corrosion inhibitor in 1 M HCl, Measurement, 99, 53–63.

[12] Salarvand, Z., Amirnasr, M., Talebian, M., Raeissi, K., and Meghdadi, S., 2017, Enhanced corrosion resistance of mild steel in 1M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies, Corros. Sci., 114, 133–145.

[13] Wang, Y., and Zuo, Y., 2017, The adsorption and inhibition behavior of two organic inhibitors for carbon steel in simulated concrete pore solution, Corros. Sci., 118, 24–30.

[14] Pedersen, C.J., 1970, Crystalline salt complexes of macrocyclic polyethers, J. Am. Chem. Soc., 92 (2), 386–391.

[15] Pedersen, C.J., 1967, Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc., 89 (26), 2495–2496.

[16] Du, J., Huang, Z., Yu, X.Q., and Pu, L., 2013, Highly selective fluorescent recognition of histidine by a crown ether–terpyridine–Zn(II) sensor, Chem. Commun., 49 (47), 5399–5401.

[17] Hong, M., Wang, X., You, W., Zhuang, Z., and Yu, Y., 2017, Adsorbents based on crown ether functionalized composite mesoporous silica for selective extraction of trace silver, Chem. Eng. J., 313, 1278–1287.

[18] Hasanov, R., Bilge, S., Bilgiç, S., Gece, G., and Kılıç, Z., 2010, Experimental and theoretical calculations on corrosion inhibition of steel in 1 M H2SO4 by crown type polyethers, Corros. Sci., 52 (3), 984–990.

[19] Fouda, A.S., Abdallah, M., Al-Ashrey, S.M., and Abdel-Fattah, A.A., 2010, Some crown ethers as inhibitors for corrosion of stainless steel type 430 in aqueous solutions, Desalination, 250 (2), 538–543.

[20] Hadisaputra, S., Canaval, L.R., Pranowo, H.D., and Armunanto, R., 2014, Theoretical study of substituent effects on Cs+/Sr2+–dibenzo-18-crown-6 complexes, Monatsh. Chem., 145 (5), 737–745.

[21] Hadisaputra, S., Canaval, L.R., Pranowo, H.D., and Armunanto, R., 2014, Theoretical study on the extraction of alkaline earth salts by 18-crown-6: Roles of counterions, solvent types and extraction temperatures, Indones. J. Chem., 14 (2), 199–208.

[22] Canaval, L.R., Hadisaputra, S., and Hofer, T.S., 2015, Remarkable conformational flexibility of aqueous 18-crown-6 and its strontium(II) complex – ab initio molecular dynamics simulations, Phys. Chem. Chem. Phys., 17 (25), 16359–16366.

[23] Hadisaputra, S., Pranowo, H.D., and Armunanto, R., 2012, Extraction of strontium(II) by crown ether: Insights from density functional calculation, Indones. J. Chem., 12 (3), 207–216.

[24] Kaya, S., Lei, G., Kaya, C., Tüzün, B., Obot, I.B., Touir, R., and Islam, N., 2016, Quantum chemical and molecular dynamic simulation studies for the prediction of inhibition efficiencies of some piperidine derivatives on the corrosion of iron, J. Taiwan Inst. Chem. Eng., 65, 522–529.

[25] Zarrouk, A., El Ouali, I., Bouachrine, M., Hammouti, B., Ramli, Y., Essassi, E.M., and Salghi, R., 2013, Theoretical approach to the corrosion inhibition efficiency of some quinoxaline derivatives of steel in acid media using the DFT method, Res. Chem. Intermed., 39 (3), 1125–1133.

[26] Obot, I.B., Kaya, S., Kaya, C., and Tüzün, B., 2016, Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches, Res. Chem. Intermed., 42 (5), 4963–4983.

[27] Zhang, D., Tang, Y., Qi, S., Dong, D., Cang, H., and Lu, G., 2016, The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl, Corros. Sci., 102, 517–522.

[28] Saha, S.K., Hens, A., Murmu, N.C., and Banerjee, P, 2016, A comparative density functional theory and molecular dynamics simulation studies of the corrosion inhibitory action of two novel N-heterocyclic organic compounds along with a few others over steel surface, J. Mol. Liq., 215, 486–495.

[29] Becke, A.D., 1998, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A Gen. Phys., 38 (6), 3098–3100.

[30] Becke, A.D., 1993, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction, J. Chem. Phys., 98 (7), 5648–5652.

[31] Lee, C., Yang, W., and Parr, R.G., 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter., 37 (2), 785–789.

[32] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Ui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I.R., Gomperts, R., Martin, L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M.P., Gill, M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., and Pople. J.A., 2004, Gaussian 03: Gaussian, Inc. Wallingford., CT, 6492.

[33] Koopmans, T., 1934, Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, Physica, 1 (1-6), 104–113.

[34] Foresman, J.B., and Frisch, A., 1995, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburg, PA (USA), 365.

[35] Pauling, L., 1960, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York.

[36] Pearson, R.G., 1990, Hard and soft acids and bases—the evolution of a chemical concept, Coord. Chem. Rev., 100, 403–425.

[37] Sastri, V.S., and Perumareddi, J.R., 1997, Molecular orbital theoretical studies of some organic corrosion inhibitors, Corros. Sci., 53 (8), 617–622.

[38] Dewar, M.J.S., and Thiel, W., 1977, Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen, J. Am. Chem. Soc., 99 (15), 4907–4917.

[39] Obayes, H.R., Alwan, G.H., Alobaidy, A.H.M.J., Al-Amiery, A.A., Kadhum, A.A.H., and Mohamad, A.B., 2014, Quantum chemical assessment of benzimidazole derivatives as corrosion inhibitors, Chem. Cent. J., 8, 21.

[40] Senet, P., 1997, Chemical hardnesses of atoms and molecules from frontier orbitals, Chem. Phys. Lett., 275 (5-6), 527–532.

[41] Ghosh, D.C., and Islam, N., 2011, Whether electronegativity and hardness are manifest two different descriptors of the one and the same fundamental property of atoms—A quest, Int. J. Quantum Chem., 111 (1), 40–51.

[42] Sanderson, R.T., 1976, Chemical Bond and Bond Energy, Academic Press Inc., New York.

[43] Elshakre, M.E., Alalawy, H.H., Awad, M.I., and El-Anadouli, B.E., 2017, On the role of the electronic states of corrosion inhibitors: Quantum chemical-electrochemical correlation study on urea derivatives, Corros. Sci., 124, 121–130.

[44] Ramachandran, S., Tsai, B.L., Blanco, M., Chen, H., Tang, Y., and Goddard, W.A., 1997, Atomistic simulations of oleic imidazolines bound to ferric clusters, J. Chem. Phys. A, 101 (1), 83–89.

[45] Dewar, M.J.S., 1989, A critique of frontier orbital theory, J. Mol. Struct. THEOCHEM, 200, 301–323.

[46] Roque, J.M., Pandiyan, T., Cruz, J., and García-Ochoa, E., 2008, DFT and electrochemical studies of tris(benzimidazole-2-ylmethyl)amine as an efficient corrosion inhibitor for carbon steel surface, Corros. Sci., 50 (3), 614–624.

[47] Turcio-Ortega, D., Pandiyan, T., Cruz, J., and García-Ochoa, E., 2007, Interaction of imidazoline compounds with Fen(n = 1-4 atoms) as a model for corrosion inhibition: DFT and electrochemical studies, J. Phys. Chem. C, 111 (27), 9853–9866.

[48] Fujimoto, H., and Inagaki, S., 1977, Orbital interaction and chemical bonds. Polarization in chemical reactions, J. Am. Chem. Soc., 99 (23), 7424–7432.



DOI: https://doi.org/10.22146/ijc.26667

Article Metrics

Abstract views : 3831 | views : 3127


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.