The Addition of N-Butanol in Ethanol-Isooctane Mixture to Reduce Vapor Pressure of Oxygenated-Gasoline Blend

https://doi.org/10.22146/ijc.26613

Rendra Panca Anugraha(1), Zul Akbar Andi Picunang(2), Annas Wiguno(3), Rizky Tetrisyanda(4), Kuswandi Kuswandi(5), Gede Wibawa(6*)

(1) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(2) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(3) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(4) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(5) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(6) Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(*) Corresponding Author

Abstract


In this work, vapor pressure of binary systems for isooctane + ethanol, isooctane + n-butanol and ethanol + n-butanol and ternary system for isooctane + ethanol + n-butanol were measured in the temperature range from 313.15 to 318.15 K using the inclined ebulliometer. The experimental results showed that the existence of n-butanol in isooctane decreases the vapor pressure of mixture, while increasing n-butanol fraction in ternary isooctane-ethanol-n-butanol mixture decreased vapor pressure of mixture. Experimental data for binary systems studied were correlated with Wilson, NRTL and UNIQUAC models with average relative deviation (ARD) of 3.5%. The optimized binary parameter pairs obtained in this work were used to estimate the ternary system. The Wilson model gave the best performance for estimation of ternary system with ARD of 5.4%. All systems studied showed non-ideal solution with positive deviation from Raoult’s law.

Keywords


vapor pressure; n-butanol; ethanol; isooctane; gasoline

Full Text:

Full Text PDF


References

[1] Wen, L., Xin, C.Y., and Yang, S.C., 2010, The effect of adding dimethyl carbonate (DMC) and ethanol to unleaded gasoline on exhaust emission, Appl. Energy, 87 (1), 115–121.

[2] Duncan Seddon and Associates, 2000, Octane Enhancing Petrol Additives/Products: Literature Review and Analysis, Duncan Seddon and Associates Pty Ltd, Victoria.

[3] Mielenz, J.R., 2001, Ethanol production from biomass: technology and commercialization status, Curr. Opin. Microbiol., 4 (3), 324–329.

[4] Bondy, S.C., 1992, Ethanol toxicity and oxidative stress, Toxicol. Lett., 63 (3), 231–241.

[5] Aulich, T.R., He, X., Grisanti, A.A., and Knudson, C.L., 1994, Gasoline evaporation–ethanol and nonethanol blends, J. Air Waste Manage. Assoc., 44 (8), 1004–1009.

[6] ASTM Standard D323-15a, 2015, Standard Test Method for Vapor Pressure of Petroleum Products (Reid Method), ASTM International, Pennsylvania.

[7] Antoni, D., Zverlov, V.V., and Schwarz, W.H., 2007, Biofuels from microbes, Appl. Microbiol. Biotechnol., 77 (1), 23–35.

[8] Peralta-Yahya, P.P., Zhang, F., del Cardayre, S.B., and Keasling, J.D., 2012, Microbial engineering for the production of advanced biofuels, Nature, 488 (7411), 320–328.

[9] Anugraha, R.P., Altway, A., and Wibawa, G., 2017, Measurement and correlation of isothermal binary vapor−liquid equilibrium for diethyl carbonate + isooctane/n‑heptane/toluene systems, J. Chem. Eng. Data, 62, 2362–2366.

[10] Hull, A., Kronberg, B., van Stam, J., Golubkov, I., and Kristensson, J., 2006, Vapor−liquid equilibrium of binary mixtures. 1. Ethanol + 1-butanol, ethanol + octane, 1-butanol + octane, J. Chem. Eng. Data, 51 (6), 2002–2008.

[11] Garcés, S.I., Faneite, A.M., Soto, D., Álvarez, C.A., and Urdaneta, M.R., 2011, Isothermal vapor–liquid equilibrium data of propan-1-ol + 2,2,4-trimethylpentane and butan-1-ol + 2,2,4-trimethylpentane at 318.15 K, J. Chem. Eng. Data, 56, 3346–3350.

[12] Belabbaci, A., Villamañan, R.M., Negadi, L., Martín, C.M., Kaci, A.A., and Villamañan, M.A., 2012, Vapor–liquid equilibria of binary mixtures containing 1-butanol and hydrocarbons at 313.15 K, J. Chem. Eng. Data, 57 (1), 114–119.

[13] Ghellai, S., Belabbaci, A., Villamañan, R.M., Martin, M.C., Villamañan, M.A., and Negadi L., 2013, Vapour–liquid equilibria of binary and ternary mixtures containing 1-butanol, 2,2,4-trimethylpentane and 1-hexene at T = 313.15 K, J. Chem. Thermodyn., 63, 164–168.

[14] Wilson, G.M., 1964, Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing, J. Am. Chem. Soc., 86 (2), 127–130.

[15] Renon, H., and Prausnitz, J.M., 1968, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J., 14 (1), 135–144.

[16] Abrams, D.S., and Prausnitz, J.M., 1975, Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J., 21 (1), 116–128.

[17] Li, H., Han, S., and Teng, Y., 1995, Bubble points measurement for system chloroform-ethanol-benzene by inclined ebulliometer, Fluid Phase Equilib., 113, 185–195.

[18] Barker, J.A., 1953, Determination of activity coefficients from total pressure measurements, Aust. J. Chem., 6, 207–210.

[19] Poling, B.E., Prausnitz, J. M., and O’Connel, J.P., 2001, The Properties of Gases and Liquids, 5th ed., Mc. Graw-Hill, New York.



DOI: https://doi.org/10.22146/ijc.26613

Article Metrics

Abstract views : 932 | views : 1193


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.